E:I?é electronics ﬁw\p\py

Article
Noise-Resilient Masked Face Detection Using Quantized
DnCNN and YOLO

Rockhyun Choi *@, Hyunki Lee 17, Bong-seok Kim 3{%, Sangdong Kim 34 and Min Young Kim %*

Division of Intelligent Robot, ICT Research Institute, Daegu Gyeongbuk Institute of Science and Technology
(DGIST), Daegu 42988, Republic of Korea; choimosi@dgist.ac.kr (R.C.); hklee@dgist.ac.kr (H.L.)

School of Electronic and Electrical Engineering, Kyungpook National University,

Daegu 41566, Republic of Korea

Division of Mobility Technology, ICT Research Institute, Daegu Gyeongbuk Institute of Science and
Technology (DGIST), Daegu 42988, Republic of Korea; remnant@dgist.ac.kr (B.-s.K.);

kimsd728@dgist.ac.kr (S.K.)

Interdisciplinary Engineering, and Department of Advanced Technology of Daegu Gyeongbuk Institute of
Science and Technology, Daegu 42988, Republic of Korea

Correspondence: minykim@knu.ac.kr

Abstract

This study presents a noise-resilient masked-face detection framework optimized for the
NVIDIA Jetson AGX Orin, which improves detection precision by approximately 30%
under severe Gaussian noise (variance 0.10) while reducing denoising latency by over
42% and increasing end-to-end throughput by more than 30%. The proposed system
integrates a lightweight DnCNN-based denoising stage with the YOLOv11 detector, em-
ploying Quantize-Dequantize (QDQ)-based INT8 post-training quantization and a parallel
CPU-GPU execution pipeline to maximize edge efficiency. The experimental results demon-
strate that denoising preprocessing substantially restores detection accuracy under low
signal quality. Furthermore, comparative evaluations confirm that 8-bit quantization
achieves a favorable accuracy-efficiency trade-off with only minor precision degrada-
tion relative to 16-bit inference, proving the framework’s robustness and practicality for
real-time, resource-constrained edge Al applications.
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1. Introduction

Reliable face detection in real-world environments remains challenging due to various
image degradations such as illumination changes, motion blur, sensor interference, and

R) Check for updates low-resolution imaging. These degradations distort facial texture and significantly reduce

the performance of conventional detectors, especially when facial regions are partially
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deteriorate face-related tasks, particularly under unconstrained conditions where imaging
quality cannot be guaranteed [1]. Low-quality or compressed images often fail to preserve
key discriminative features, making downstream recognition and detection less reliable [2].
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or safety considerations are required; the COVID-19 period is a representative example
that highlighted the widespread impact of mask usage. The presence of masks further
complicates the detection process by covering key facial regions. Previous works have
attempted to address masked face detection; however, noise contamination continues to be
a major obstacle for achieving stable performance under real-world conditions [4].

Deep learning-based image restoration models have recently shown strong capability
in suppressing complex and spatially varying noise. Among them, the Denoising Convolu-
tional Neural Network (DnCNN) has demonstrated high effectiveness due to its residual
learning framework and batch normalization mechanism, outperforming classical filtering-
based approaches [5]. Nonetheless, integrating such denoising networks with modern
object detectors such as YOLOv11 [6] imposes substantial computational overhead. As a
result, real-time deployment on resource-constrained edge-Al devices becomes difficult
without additional optimization.

To overcome these limitations, this work proposes a noise-resilient masked face de-
tection framework that combines DnCNN-based denoising with YOLOv11 detection, en-
hanced through neural network quantization techniques. Quantization is widely adopted
to reduce memory usage and computational complexity for edge deployment [7]. Further-
more, recent findings indicate that quantization can provide a beneficial regularization ef-
fect, improving robustness under noisy conditions [8-10]. Motivated by these insights, this
work focuses on both noise resilience and computational efficiency by unifying quantized
denoising and high-accuracy object detection within a single edge-friendly architecture.

The key contributions of this paper are summarized as follows:

*  End-to-End Noise-Resilient Detection Pipeline for Edge Deployment: We propose an
end-to-end denoising—detection pipeline that integrates a lightweight DnCNN-based
denoiser with the YOLOv11 detector, enabling robust masked-face detection under
noisy imaging conditions on resource-constrained edge devices.

*  Systematic Evaluation across Desktop and Embedded Platforms: We perform a com-
prehensive and controlled evaluation of the proposed pipeline on both a desktop
workstation and the NVIDIA Jetson AGX Orin, focusing on detection robustness,
quantization stability, and real-time feasibility under multiple noise levels.

*  Practical INT8 Deployment via QDQ-Based Post-Training Quantization: We demon-
strate that ONNX-compliant QDQ-based post-training quantization enables efficient
INTS acceleration of the denoising stage with minimal accuracy degradation, support-
ing practical deployment in latency-tolerant edge scenarios.

¢  Parallelized Edge-Al Execution Pipeline: We implement a parallelized CPU-GPU
execution pipeline that overlaps preprocessing, denoising, and detection, significantly
improving hardware utilization and increasing end-to-end throughput on the Jetson
AGX Orin.

*  Comprehensive Validation across Noise Levels and Hardware Settings: Extensive
experiments on the FMLD dataset across noise variances from 0.01 to 0.10 confirm
consistent detection improvements and demonstrate the robustness and deployability
of the proposed system in real-world edge environments.

The remainder of this paper is organized as follows. Section 2 reviews related work on
denoising, masked face detection, and model quantization. Section 3 details the architecture
and methodology of the proposed model. Section 4 presents experimental results, and
Section 5 concludes the paper.
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2. Related Work
2.1. Image Denoising and Restoration

Image denoising and restoration techniques have traditionally relied on filtering-
based approaches due to their computational efficiency and simplicity. Representative
methods include BM3D [11], wavelet-based filtering [12], and multiscale or low-rank
formulations for structured noise suppression [13-15]. However, these approaches depend
on handcrafted transforms and manually designed priors, which limits their generalization
to diverse noise characteristics and often leads to over-smoothing or loss of fine details.
These limitations motivate the adoption of more expressive, data-driven denoising models.

Deep learning-based methods have thus emerged as powerful alternatives, offering the
ability to learn adaptive representations that surpass the capabilities of traditional filtering-
based algorithms. Convolutional Neural Network (CNN) models such as DnCNN [5]
leverage residual learning and batch normalization to perform robust blind denoising
without requiring explicit noise-level information. Transformer-based architectures like
SwinlR [16] further enhance restoration quality by modeling long-range dependencies
through self-attention mechanisms, achieving state-of-the-art performance across diverse
benchmarks. Despite these advantages, deep learning-based denoisers often suffer from
substantial computational and memory costs, particularly Transformer-based designs. This
limits their suitability for latency-sensitive or resource-constrained environments, such as
edge devices or real-time applications. Consequently, lightweight CNN-based models such
as DnCNN and FFDNet [17] have been explored to strike a more practical balance between
efficiency and performance. Notably, DnCNN functions as a blind denoiser without re-
quiring a noise-level map [18], making it more adaptable to dynamic real-world conditions
where noise variance is unknown. Nevertheless, even these CNN-based models can impose
non-negligible latency depending on the platform and precision used. These observations
motivate the need for further complexity reduction, especially through quantization or
model simplification, to enable efficient yet robust denoising pipelines suitable for real-time
deployment. To balance representativeness and experimental feasibility under edge de-
ployment constraints, this study restricts the denoising comparison to three representative
models: DnCNN as a blind CNN-based denoiser, FFDNet as a lightweight non-blind model,
and SwinlIR as a Transformer-based state-of-the-art approach.

Several studies have investigated YOLO-based object detection under challenging
imaging conditions. Li et al. proposed a YOLO-based ship detection framework for thermal
infrared images captured under complex backgrounds, demonstrating the applicability
of YOLO detectors in degraded sensing environments [19]. Rodriguez-Rodriguez et al.
systematically analyzed the impact of noise and brightness variations on modern object
detectors, including YOLO, highlighting robustness degradation induced by input pertur-
bations [20]. More recent works have explored architectural or preprocessing modifications
to improve YOLO robustness under adverse conditions, such as DiffuYOLO for small-object
detection in remote sensing imagery [21] and Dark-YOLO for low-light object detection [22].
In contrast to these studies, which primarily emphasize detection accuracy under clean
or moderately degraded conditions, this work focuses on system-level robustness under
severe noise and low-precision inference in resource-constrained edge environments.

2.2. Masked Face Detection Under Adverse Conditions

Environments where mask-wearing is unavoidable—such as medical facilities, in-
dustrial sites, and pandemic situations like COVID-19—have increased the demand for
robust face detection systems capable of handling occlusions. Benchmark datasets such
as MAFA and the FMLD dataset [23,24] were introduced to address this challenge. Al-
though state-of-the-art object detectors, including YOLOv10 [25] and the recently released
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YOLOV11 [6], have improved occlusion robustness through advanced feature fusion mod-
ules (e.g., PANet, BiFPN), their performance degrades sharply when visual degradations
are combined—such as a masked face in a noisy, low-light environment [4].

Most existing studies focus on either denoising or masked face detection in isolation.
There is limited research on integrated frameworks that simultaneously address occlusion
and sensor noise. This study bridges this gap by proposing a unified pipeline that enhances
the input quality for YOLOV11 via a lightweight denoiser, ensuring robust detection even
under severe noise conditions.

2.3. Quantization for Efficient and Robust Edge Deployment

Deploying deep neural networks on resource-constrained edge devices (e.g., NVIDIA
Jetson series) requires rigorous optimization. Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT) are essential techniques that reduce model size and
inference latency by converting 32-bit floating-point weights to lower-precision formats
such as INTS8 [7].

Beyond computational efficiency, recent theoretical and empirical studies suggest
that quantization can enhance model robustness. Research indicates that the discrete
nature of quantized weights can act as a form of implicit regularization, filtering out high-
frequency noise perturbations and preventing overfitting to noisy labels [8,9]. For instance,
Wang et al. [10] demonstrated that quantization consistency regularization improves gener-
alization in varying domains. Motivated by these findings, this study explores how low-bit
quantization (up to 8-bit) of the DnCNN module not only accelerates inference but also
contributes to stable detection performance by suppressing minor noise artifacts.

3. Proposed Method
3.1. System Architecture: Initialization, Validation, and Edge Deployment

This subsection provides an overview of the end-to-end architecture of the proposed
noise-robust masked face detection framework. The system is organized into three se-
quential stages—Initialization, Validation, and Edge Deployment—that together define
the full operational pipeline from training to real-time inference on embedded hardware.
Figure 1 summarizes this three-stage workflow; panels (a),(b), and (c) correspond to the
Initialization, Validation, and Edge Deployment stages, respectively.

As shown in Figure 1a, the initialization step trains the YOLOv11 detector using both
masked and unmasked images from the FMLD dataset to establish a baseline for masked-
face detection. During this stage, Gaussian noise is added to create noise-augmented
datasets that are later used to assess the benefit of denoising within the pipeline. A pre-
trained DnCNN model is applied to generate reference denoised outputs. The DnCNN is
intentionally not retrained, ensuring that the subsequent evaluation isolates the contribu-
tion of denoising itself and avoids dataset leakage or noise-specific overfitting.

Figure 1b illustrates the validation step, where noisy FMLD validation images are
restored using 8-bit and 16-bit quantized versions of the DnCNN model. The denoised
images are then processed by YOLOv11, which predicts both masked and unmasked face
classes. The examples shown in the figure represent typical outcomes, where YOLOv11
correctly labels unmasked subjects as “face” and masked subjects as “mask” after the
denoising stage. This step measures how quantization and denoising jointly influence
detection robustness prior to deployment.

The complete denoising—detection pipeline is executed on the NVIDIA Jetson AGX
Orin, as depicted in Figure 1c. Incoming images, including both masked and unmasked
cases, are preprocessed on the CPU and sent to a TensorRT-based DnCNN engine for
patch-wise denoising. The restored patches are reassembled into full-resolution frames
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before YOLOv11 inference. A queue-based, asynchronous CPU-GPU execution structure
enables the DnCNN and YOLOvV11 engines to run in overlapping streams, allowing the
system to achieve low-latency, real-time performance on the embedded platform.

Finally, Figure 1d outlines the visualization analysis framework, which is extensively
discussed in Section 4. This panel serves as a conceptual preview of the qualitative evalua-
tion, illustrating how the pipeline is analyzed in terms of intermediate feature preservation
and detection robustness under diverse corruption scenarios. The specific visualization
results corresponding to this framework are detailed later in Section 4.3
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Figure 1. Overall architecture of the proposed three-stage noise-robust detection pipeline: (a) training
phase with noise-injected data for YOLO learning, (b) validation step using quantized DnCNN and
YOLO, (c) edge inference pipeline with parallel DnCNN-YOLO execution on embedded devices,
(d) visualization analysis framework illustrating noisy inputs, intermediate feature maps, denoised
outputs, and final detection results.

The following subsections describe the denoising strategy, noise construction pro-
cess, quantization method, frame-reconstruction pipeline, and Jetson-based execution
architecture in detail.

3.2. Denoising Strategy Using DnCNN

This subsection describes the denoising module used in the proposed pipeline. A pre-
trained DnCNN model is employed as a fixed restoration backbone to suppress Gaussian
noise before YOLOvV11 detection. The denoising process operates on each RGB channel
independently, and the channels are recombined to produce a restored full-resolution
image. Channel-wise inference prevents parameter growth that would occur in a joint
three-channel model and reduces GPU memory usage. This decomposition also improves
CPU-GPU parallelization on Jetson devices, allowing independent patch streams to be
scheduled concurrently without cross-channel synchronization overhead.
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3.2.1. Comparison with Other Denoising Models

To determine an appropriate denoising module for our masked-face detection pipeline,
we compared three representative deep-learning—based denoisers: DnCNN, FFDNet, and
SwinlIR. Table 1 summarizes their quantitative performance under Gaussian noise with
different o values. SwinIR achieves the highest PSNR and SSIM across most noise levels
due to its Transformer-based architecture; however, its extremely low inference speed
(0.17 FPS) renders it unsuitable for real-time or edge-device applications.

Table 1. Quantitative comparison of denoising models under Gaussian noise with different ¢ values.
Best performance per noise level is highlighted in bold.

Algorithm Noise Level PSNR (dB) SSIM
DnCNN [5] c=15 36.72 0.945
FFDNet [17] c=15 35.62 0.936
SwinlIR [16] c=15 37.69 0.955
DnCNN [5] c=25 34.70 0.920
FFDNet [17] =25 34.69 0.925
SwinlIR [16] oc=25 35.45 0.935
DnCNN [5] o =50 31.14 0.868
FFDNet [17] =50 31.55 0.880
SwinlR [16] o =50 32.41 0.897

FFDNet provides the fastest throughput (64.91 FPS), but its usability is fundamen-
tally limited by its non-blind design. DnCNN, in contrast, offers a balanced trade-off
between restoration quality and computational efficiency, making it a practical candidate
for deployment-focused pipelines.

Although SwinIR demonstrates superior restoration accuracy, its computational cost
makes it unsuitable for embedded use. Meanwhile, FFDNet exhibits impressive runtime
performance but requires a noise-level map as an additional input, restricting its applicabil-
ity in real-world environments where noise intensity cannot be estimated.

Table 2 reports the inference speed comparison. The denoising benchmarks reported
in Tables 1 and 2 follow the standard evaluation pipeline provided by the KAIR image
restoration toolbox [26], which is widely used for reproducible comparison of CNN-based
denoising models.

Table 2. Runtime performance of denoising models at ¢ = 15.

Algorithm FPS
DnCNN [5] 17.02
FFDNet [17] 64.91
SwinlR [16] 0.17

A decisive factor in selecting DnCNN is its structural suitability for uncontrolled
real-world settings. The following properties highlight its advantages:

¢  Structural Difference (DnCNN vs. FFDNet): FFDNet is a non-blind denoiser that
requires a noise level ¢ as an additional input channel. This dependency is impractical
in dynamic scenes where the noise level varies unpredictably and cannot be measured
in advance.

e Blind Denoising Capability: DnCNN operates as a blind denoiser, removing noise
without any external knowledge of ¢ Its residual-learning structure allows it to handle
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diverse and unknown degradation patterns, ensuring stable preprocessing across a
wide range of conditions.

Following the residual-learning formulation of DnCNN [5], the adopted denoising
network consists of a sequence of convolutional layers with batch normalization and ReLU
activation. In this work, the same principle is applied in a channel-wise manner to facilitate
parallel execution on edge devices. Let I, € RF*W denote the noisy input of the c-th color
channel, where ¢ € {R, G, B}. For the [-th layer (1 < I < L), the intermediate feature map
is computed as

Y = o(BN(W®O s B 00, (1)

where * denotes the convolution operator, W and b are the learnable kernels and biases,
BN(-) denotes batch normalization, and o(-) represents the ReLU activation function. The
input feature map is given by FC(O) = I.. The final layer predicts the noise residual without
a nonlinear activation,

e = WD 5 EED 4 p(0) )
The denoised output is obtained by residual subtraction,

fc = I — 7. ®3)
This channel-wise formulation enables independent denoising of each color compo-
nent, reducing model complexity and facilitating parallel execution on edge devices.
Given these considerations, DnCNN provides a rational trade-off between accu-
racy, computational cost, and practical deployability. Accordingly, our pipeline adopts a
MATLAB-pretrained DnCNN model [27]. The model was obtained using MATLAB R2024b
(MathWorks, Natick, MA, USA) with the Image Processing Toolbox, providing a stable and
well-validated implementation without the need for additional training.

3.2.2. Noise Construction and Parameter Definition

Additive Gaussian noise is adopted in this work not as a comprehensive model of
real-world degradation, but as a controlled baseline that enables explicit parameterization
of noise strength and direct correspondence with widely used denoising benchmarks. To
model realistic degradation, Gaussian noise is added to RGB images normalized to the
[0,1] range. Let I = (R, G, B) denote a clean pixel and let n = (ng,ng,ng) denote an
independent noise vector. The noisy pixel is generated according to

Inoisy =I1+n, (4)
where each component of 7 is sampled from N (0, (Ti2nj ). The term Ui2nj represents the variance
of the injected noise used in our system-level robustness evaluation.

In contrast, denoiser benchmarks such as DnCNN, FFDNet, and SwinIR typically

express noise intensity using the standard deviation o on a [0, 255] scale. To relate the
injected variance to this benchmark notation, the equivalent standard deviation is given by

Ueq = 255, /0%, ®)

consistent with standard practice in denoising studies [5,28]. This conversion clarifies how

our injected noise levels correspond to common benchmark settings (e.g., ¢ = 25 or 50).
The preprocessing pipeline used to generate noisy and restored images is shown in

Figure 2. The procedure consists of (a) additive noise injection, (b) RGB channel splitting,

https:/ /doi.org/10.3390/ electronics15010143


https://doi.org/10.3390/electronics15010143

Electronics 2026, 15, 143

8 of 24

(c) independent DnCNN inference per channel, and (d) channel merging to form a restored
image. Each input image is first corrupted using a controlled noise model and then
processed in a channel-wise manner. The RGB channels are separated and independently
fed into the DnCNN model trained to predict the residual noise component. The DnCNN
processes each channel independently to estimate and suppress the noise component, and
the restored channels are subsequently merged to form a denoised image. This channel-
wise residual learning strategy allows the denoiser to effectively suppress high-frequency
noise while preserving structural image features that are critical for downstream detection.
By operating independently on each channel, the pipeline avoids cross-channel interference
and maintains color consistency under severe noise conditions.

Gaussian Noisy
Clian Input > Noise Image o
mages Injection Data v
(RGB) (Noise level) (RGB) Channel
—— Splitting |,
l ®R,G,B) |
Save to
Output_noise
DnCNN Net
Denoised .
R Conv Conv Conv 5 R Denoised
—p + —+BN+ , +BN+— g =i > Image
RelLU RelLU RelLU 8 (RGB)
Denoised Channel
G Cconv Conv Conv o G Merging
-+ —+ BN+ ., tBN+ —— & —)p (RGB)
RelLU ReLU RelLU 8
B Denoised
C Conv Conv B
Y yBN+ voo BN+ — & ——Pp
ReLU  ReLU ReLU 8

Figure 2. Architecture of the Channel-wise DnCNN Denoising Pipeline.

For evaluation, three injected noise variances are considered, (Tian IS {0.01, 0.05, 0.10},
corresponding to increasing levels of degradation. The largest setting corresponds to
Ueq ~ 80, capturing severe sensor noise and compression artifacts often encountered in
surveillance imagery, and aligns with extended evaluation protocols such as FFDNet [17].

3.3. Quantized DnCNN

To enable efficient execution on edge devices, we convert the DnCNN denoiser into
low-precision formats using post-training quantization (PTQ). Quantization reduces the
precision of weights and activations, lowering memory usage and enabling fast INT8
inference while preserving robust denoising capability.

3.3.1. Post-Training Quantization

Post-training quantization (PTQ) converts a pretrained floating-point model into
an integer representation without additional training. Following the symmetric linear
quantization scheme of Jacob et al. [7], a real-valued tensor x is quantized using a scale
factor s as

X5 = round(%), (6)
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and the corresponding dequantized approximation is obtained by
X RS X (7)

The scale factor s is typically computed from the dynamic range of x using max-abs
scaling for signed INTS, ensuring that the representable integer range covers the majority
of the activation or weight distribution. This quantization scheme substantially reduces
memory bandwidth and enables efficient INT8 inference on embedded devices such as the
NVIDIA Jetson AGX Orin.

Although PTQ introduces quantization noise due to discrepancies between floating-
point and integer arithmetic, DnNCNN remains stable under INT8 conversion. Its residual-
learning architecture inherently mitigates small perturbations in feature representa-
tions, allowing the quantized DnCNN to maintain effective denoising performance in
our experiments.

3.3.2. QDQ-Based Post-Training Quantization (TensorRT INTS)

For deployment on Jetson AGX Orin, we employ TensorRT’s QDQ-based PTQ
pipeline [29], which inserts Quantize (QQ) and Dequantize (DQ) nodes around each oper-
ator to form a hardware-optimized INT8 computation graph compliant with the ONNX
Quantization Specification [30]. Scale factors for weights and activations are obtained
through PTQ calibration using representative samples, with no retraining or QAT involved.
The resulting QDQ INT8 engine achieves significant latency reduction while maintaining
consistent denoising performance. The quantized DnCNN outputs are directly fed into
YOLOV11, forming a lightweight two-stage pipeline for robust masked-face detection on
edge devices.

3.4. YOLOwv11-Based Masked Face Detection with Frame Reconstruction

In the proposed framework, YOLOvV11 serves as the downstream detector that con-
sumes the restored output from the quantized DnCNN (Q-DnCNN) module. Unlike
standard detection pipelines that process raw input frames directly, our system incorpo-
rates an intermediate reconstruction mechanism to bridge the patch-based denoiser and
the full-frame detector.

Frame Reconstruction and Input Processing: Since the Q-DnCNN module processes
the input stream in localized patches to maximize GPU parallelization efficiency (see
Section 3.5), the denoised patches must be spatially reassembled before detection. As
illustrated in Figure 3, the CPU-based reconstruction module stitches the asynchronous
stream of denoised patches into a coherent full-resolution frame. Subsequently, this restored
frame is resized to the standard input resolution of 640 x 640 pixels required by the
YOLOWV11 architecture. This decoupled design ensures that the detector operates on globally
consistent spatial features, which is critical for recognizing masked faces across varying
scales and aspect ratios.

Denoised Patches Full Restored Frame
(Output of Q-DnCNN) Input Tensor Detection

P1 P2 ) o N
Stitch Resize YOLO I‘ i
. 640x640 gg L

P3

(Default Params)

Figure 3. Frame Reconstruction and Detection Pipeline.
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Training Configuration: To isolate the performance gains attributed solely to the
proposed denoising preprocessing, we trained the YOLOv11 model using the default
hyperparameters provided by the official Ultralytics repository. The model was trained
on the clean FMLD training set without any additional architectural modifications. Using
default parameters (e.g., SGD optimizer, initial learning rate of 0.01, and momentum of
0.937) ensures that the reported improvements in robustness (Section 4) result directly
from the superior quality of the Q-DnCNN-enhanced input, rather than from extensive
hyperparameter tuning or detector-specific optimizations.

Rationale for Choosing YOLOv11: While various lightweight detectors exist,
YOLOvV11 was selected for its superior trade-off between detection accuracy and com-
putational efficiency on edge hardware. Recent comparative studies on YOLO architectures
indicate that newer iterations, such as YOLOvV11, not only achieve higher mAP but also
exhibit improved inherent robustness against input perturbations and adversarial distor-
tions compared to predecessors and other lightweight models [25,31]. This characteristic
is particularly critical for our framework, where the detector must operate reliably on
denoised outputs that may still contain residual artifacts.

3.5. Edge Device Implementation on Jetson AGX Orin

This subsection describes the edge-device implementation of the proposed framework
on the NVIDIA Jetson AGX Orin platform. Since both DnCNN denoising and YOLOv11
detection are computationally intensive operations, achieving real-time performance re-
quires a pipelined architecture that leverages multi-threaded CPU processing together with
asynchronous GPU execution. Figure 4 illustrates the overall pipeline architecture adopted

in this study.
Jetson CPU Multi-Core Jetson GPU
| ‘Stage 1: Preprocess |
Input Data

(INT8 / FP16 / Async Stream)
Multi-Stream Processing

Decode Workers

Image Loading 1 TensorRT DnCNN
N Threads / Resize / Padding | ;

Denoised Patch
Queue 1

Stage 2: Parallel DnCNN TensorRT YOLOV11

Worker Threads Patch Queue T | (FP32 / Single Stream)
Patch Gen Image Inference

‘ Image Reconstruction | |

| Detection Result |

Queue 2

Figure 4. Pipeline Architecture: Multi-threaded CPU + Async GPU Processing on Jetson Orin AGX.

The overall design consists of two cooperating subsystems—a CPU-side preprocessing
pipeline and a GPU-side inference pipeline—connected through decoupled FIFO queues.
On the CPU side, incoming images are loaded and decoded by multiple worker threads,
which perform resizing, normalization, and partitioning into patches. The preprocessed
patches are then pushed into a patch queue that feeds the GPU-based denoising stage.

System-level parallelism is achieved by decoupling CPU-side preprocessing, result
aggregation, and frame reconstruction from GPU-based inference. While the GPU exe-
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cutes denoising and detection kernels, the CPU concurrently handles input acquisition,
basic preprocessing, and reconstruction of denoised patches, enabling pipeline overlap
across successive frames. The use of FIFO queues decouples stage execution timing and
avoids frame-level synchronization barriers, allowing each stage to progress independently
and efficiently.

Memory usage is managed at the frame level, and intermediate feature maps are not
persistently stored. Instead, denoised patches are immediately accumulated into frame-
level buffers and discarded after reconstruction, which limits memory overhead and avoids
unnecessary data transfers. As a result, CPU-GPU communication overhead is amortized
across the asynchronous pipeline and does not dominate the overall end-to-end latency,
making the implementation suitable for real-time edge deployment under constrained
computational and memory resources.

On the GPU side, two TensorRT engines operate in a pipelined manner. The DnCNN
engine executes denoising using FP16 or INT8 precision and supports asynchronous infer-
ence, allowing multiple patches to be processed efficiently. Once denoising is completed,
the reconstructed frame is transferred back to the CPU and pushed to the next queue for
detection. The YOLOvV11 engine retrieves denoised frames from this queue and performs
single-stream object detection.

This hybrid execution model enables overlapping data transfer, denoising, reconstruc-
tion, and detection on the embedded platform. For example, while the GPU performs
YOLOV11 inference on frame i, it can concurrently apply DnCNN denoising to patches
of frame i + 1, ensuring high hardware utilization and reduced latency. Low-level kernel
scheduling and driver-specific optimizations are intentionally abstracted, as the focus of this
work is on system-level execution behavior and deployability rather than hardware-specific
micro-optimizations.

3.6. Overall System Operation

Figure 5 summarizes the end-to-end operational flow of the proposed denois-
ing—detection pipeline during deployment. Incoming frames are sequentially pro-
cessed through normalization, patch-wise denoising, frame reconstruction, and masked-
face detection.

T —
o =] A ]
L nl _ ada | | Application
Input Denoise Quantization Detection (future work)

Figure 5. End-to-end operation flow of the proposed denoising-detection pipeline.

In addition to quantitative performance metrics, qualitative visualization analyses are
employed to examine the effects of denoising and quantization on intermediate feature
representations and detection outputs. These visual comparisons are presented later in
Section 4.3 to provide intuitive insights into the behavior of the proposed pipeline under
noisy conditions.

From a system-level perspective, the pipeline is designed to maintain continuous
throughput by allowing preprocessing and inference stages to proceed without strict frame-
level synchronization. While denoising and detection are executed on different stages of
the pipeline, the overall system behavior is governed by the availability of restored frames
rather than individual module latency. This execution flow enables stable and predictable
performance under severe noise conditions, ensuring that detection accuracy is preserved
without introducing excessive end-to-end delay. As a result, the proposed framework
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achieves a practical balance between robustness and real-time feasibility on embedded
edge platforms.

4. Experiment Results

This section evaluates the proposed noise-resilient detection framework across two
computational environments: a desktop workstation and the NVIDIA Jetson AGX Orin
edge platform. Section 4.1 introduces the evaluation metrics used throughout the exper-
iments. Section 4.2 describes the dataset preparation and baseline experimental settings.
Section 4.3 analyzes noise robustness on the desktop platform under controlled Gaussian
and real-world degradation conditions. Section 4.4 investigates quantization stability and
detection accuracy on the Jetson AGX Orin under severe noise. Finally, Section 4.5 assesses
real-time performance, throughput, and energy efficiency on the embedded platform.

4.1. Evaluation Metrics

Detection performance is evaluated using standard object detection metrics, includ-
ing Precision, Recall, mAP@0.5, and mAP@0.5:0.95, which are widely adopted in object
detection benchmarks. Precision and Recall are defined as

e Recall = _IP (8)

Precision = m, TP L FN’

where TP, FP, and FN denote true positives, false positives, and false negatives, respec-
tively. Mean Average Precision (mAP) is computed as the average of class-wise Average
Precision (AP), where AP corresponds to the area under the precision—recall curve for each
class. The mAP@0.5 metric evaluates detection performance at an Intersection-over-Union
(IoU) threshold of 0.5, while mAP@0.5:0.95 further assesses robustness by averaging AP
values across multiple IoU thresholds from 0.5 to 0.95 with a step size of 0.05.

4.2. Dataset Preparation and Settings

This subsection describes the baseline configuration used to assess the fundamental
detection capability of YOLOv11 before introducing noise or quantization effects. All
experiments in Sections 4.2 and 4.3 were performed on a desktop workstation equipped
with an NVIDIA RTX 3090 GPU and an AMD Ryzen 9 processor, using the full FMLD
validation set (7148 images). These baseline results serve as a reference point for the
subsequent robustness and edge-deployment analyses presented in Sections 4.4 and 4.5.

FMLD [24], which integrates the MAFA and Wider Face datasets [4], contains three
annotation categories that reflect real mask-wearing conditions: masked face, incorrectly
masked face, and unmasked face. FMLD was selected for this study because it provides a
realistic and challenging benchmark for masked face detection under adverse conditions.
By integrating the MAFA and WIDER Face datasets, FMLD captures diverse real-world
variations in face scale, pose, occlusion, illumination, and mask placement, including
correctly worn masks, incorrectly worn masks, and unmasked faces. These characteristics
make the dataset particularly suitable for evaluating noise robustness and detection stability
in practical surveillance scenarios.

Table 3 summarizes the number of images and annotated instances after applying
an automated bounding box correction step. To ensure training stability and evaluation
reliability, we applied an automated quality-control pipeline that filters out only corrupted
images and structurally invalid annotations (e.g., coordinates exceeding normalized bounds
or missing label files). This procedure follows standard practices for object detection dataset
preparation [32] and is recommended in official YOLO documentation to prevent pars-
ing errors. Importantly, this step is a technical quality-assurance measure that does not
alter the semantic content or class distribution of the dataset. This refinement resulted
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in a minor reduction from 12,688 to 12,675 validation instances. Because these removed
samples constitute a negligible proportion of the dataset, their impact on model evalu-
ation is minimal, while the improved annotation consistency enhances the reliability of
downstream detection.

Table 3. Instance Counts Before and After Bounding Box Filtering.

Dataset Images Instances Masked Face Incorrectly Masked Face Unmasked Face
FMLD (Updated) 34,781 50,384 24,603 1204 24,576
Validation (Updated) 7148 12,675 7423 324 4928

Totals 41,934 63,059 32,026 1528 29,505

Figure 6 illustrates the training and validation box-loss curves. Both losses decrease
rapidly in the initial epochs (0-20), indicating that the model quickly acquires the core
localization features needed for face and mask detection. After approximately 50 epochs,
the validation curve stabilizes, showing no oscillatory behavior that would signal poor
generalization. The continuous decline of the training loss, contrasted with the near-flat
validation loss, suggests a limited overfitting tendency; however, its magnitude is small
and does not meaningfully affect the downstream experiments. These trends confirm
that the YOLOv11 detector was trained stably and provides a reliable baseline for eval-
uating the effectiveness of the proposed denoising—detection pipeline. The training and
validation losses exhibit similar convergence patterns, and no increasing gap is observed as
training progresses, suggesting that overfitting is effectively controlled under the current
training protocol.

= = Training Loss
=== Validation Loss

125}

1.20

Box Loss

1.10F

1.05|

0 25 50 75 100 125 150 175

1.00
Epochs

Figure 6. Training and Validation Box Loss Curves.

The normalized confusion matrix for the three-class prediction task is shown in
Figure 7. The detector achieves strong classification performance for the mask (0.97) and
face (0.83) categories, while performance for the incorrectly masked face category is notably
lower (true positive rate of 0.65). Unlike a standard closed-set classifier, the columns of
this detection-oriented confusion matrix do not sum to one because false negatives arising
from missed detections (bounding box not generated) are accumulated outside the matrix.
As a result, the matrix more accurately reflects the detector’s localization behavior under
partially occluded or irregular mask-placement conditions.
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Figure 7. Normalized Confusion Matrix.

Performance per class is detailed in Table 4. The overall mAP@0.5 reaches 0.859 across
the full validation set, demonstrating strong baseline capability. The mask class exhibits
the highest performance (mAP@0.5 = 0.978, recall = 0.955), confirming that properly worn
masks are consistently detected. Conversely, the incorrectly masked face class yields a
lower mAP@0.5 of 0.720, reflecting the difficulty of detecting subtle variations in mask
misuse. Because these statistics are computed over all 7,148 validation images, they carry
sufficient statistical significance and constitute a robust reference point for evaluating noise
robustness in later sections.

Table 4. Face Mask Detection Performance of YOLOv11 by Class.

Class Precision Recall mAP@0.5 mAP@0.5:0.95
Face 0.817 0.824 0.880 0.623
Mask 0.940 0.955 0.978 0.654
Incorrect Mask 0.796 0.670 0.720 0.443
Average 0.851 0.816 0.859 0.573

4.3. Noise Robustness on Desktop

This subsection evaluates how synthetic Gaussian noise affects the detection perfor-
mance of YOLOv11 and examines the extent to which DnCNN preprocessing— in both full-
precision and quantized forms—recovers accuracy. All experiments here were conducted
exclusively on the desktop workstation described in Section 4.1, ensuring that the analysis
isolates the intrinsic noise sensitivity of the detector without hardware-dependent effects.

Table 5 reports Precision, Recall, mAP@0.5, and mAP@0.5:0.95 under three noise
levels (02, j € {0.01, 0.05, 0.10}). Gaussian noise was injected using the Albumentations
library, a widely adopted and reproducible data augmentation framework for computer
vision experiments [33]. For the real-world distortion scenarios (Motion Blur, Low Illu-
mination, and JPEG Compression) presented in Table 5, we adopted the severity levels
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L1, L3, and L5 following the corruption benchmark protocol established by Hendrycks
and Dietterich [34] Across all metrics, noise substantially degrades performance. Under
severe noise (02, i = 0.10), precision drops from 0.851 to 0.577, recall from 0.816 to 0.214, and
mAP@0.5 from 0.859 to 0.262. These results confirm that YOLOv11 is highly vulnerable to
high-frequency perturbations, leading to missed detections and unstable localization.

Table 5. Performance comparison of YOLOv11 with the proposed Q-DnCNN framework. The table
compares the Baseline (Noise only), Full-Precision (FP32), and Quantized models (16-bit, 8-bit) to
analyze the trade-off between precision and detection accuracy (Desktop).

Distortion Intensity Method Precision Recall mAP®@0.5 mAP@0.5:0.95

Baseline - Original YOLOv11 0.851 0.816 0.859 0.573

Primary Target: Gaussian Noise

Noise only 0.830 0.712 0.793 0510
o2 —001  PnCNN(FP32) 0.842 0.800 0.844 0.619
e Q-DnCNN (FP16) 0.849 0.793 0.846 0.561
Q-DnCNN (INTS) 0.841 0.780 0.760 0.554
. Noise only 0.742 0.416 0.489 0.295
Gaussian DnCNN (FP32) 0.831 0.733 0.812 0.527
Noise o2 =0.05

Q-DnCNN (FP16) 0.819 0.722 0.801 0517
Q-DnCNN (INTS) 0.761 0.700 0.768 0.492
Noise only 0.577 0.214 0.262 0.151
»2—010  PnCNN(FP32) 0.751 0.655 0.723 0.456
e Q-DnCNN (FP16) 0.732 0.637 0.704 0.441
Q-DnCNN (INTS) 0.708 0.598 0.659 0.414

Verification: Real-world Distortions
. L1 Noise only 0.806 0.594 0.676 0.426

Motion .
Blur L3 Noise only 0.677 0.348 0.406 0.235
L5 Noise only 0.578 0.208 0.241 0.130
. L1 Noise only 0.850 0.815 0.857 0.572
Humination L3 Noise only 0831 0797 0838 0.545
L5 Noise only 0.802 0.710 0.761 0.470
JPEG L1 Noise only 0.846 0.815 0.855 0.572
c ) L3 Noise only 0.843 0.811 0.854 0.570
ompression

L5 Noise only 0.843 0.807 0.850 0.567

Applying DnCNN effectively restores performance across all noise levels. For
Uiznj = 0.10, the denoiser increases precision from 0.577 to 0.751, recall from 0.214 to 0.655,
and mAP@Q.5 from 0.262 to 0.723—recovering more than 60% of the performance lost due
to noise. This substantial improvement indicates that DnCNN successfully suppresses
noise-induced distortions and restores the structural cues required for stable detection.

An additional observation arises under mild noise (‘Tizn i = 0.01): the quantized 16-bit
and 8-bit DNCNN variants achieve precision values (0.849 and 0.841) comparable to or
slightly higher than the full-precision model (0.842). A similar trend is observed for
mAP@0.5 (0.846 and 0.843 vs. 0.844). This counterintuitive behavior suggests that reduced
bit precision may act as an implicit regularizer. By constraining the representational
dynamic range, quantization suppresses minor fluctuations in the activation space and
stabilizes inference under weak perturbations, consistent with prior studies on quantization
regularization [8]. Recent work further shows that quantization reduces overfitting in
noisy environments [9] and enhances consistency in low-precision networks [10], which
aligns with the observed trend that Q-DnCNN matches or slightly exceeds floating-point
performance at low noise levels.
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As noise severity increases, quantized models exhibit a gradual performance drop
relative to full-precision DnCNN, as expected from the reduced numerical resolution.
However, even at 07, j = 010, the 16-bit and 8-bit variants preserve a meaningful portion of
the denoising benefit (mAP@0.5 = 0.704 and 0.659), demonstrating that quantization does
not undermine the fundamental noise-removal capability of DnCNN.

To complement the quantitative results in Table 5, Figure 8 presents qualitative vi-
sualizations illustrating how denoising preprocessing stabilizes feature representations
and detection outputs under severe noise. In particular, backbone feature maps are visual-
ized to provide insight into how high-frequency noise affects intermediate representations
and how denoising preprocessing modulates these responses prior to detection. The de-
tection results in Figure 8c reflect the differences observed in the preceding restoration
and feature map visualizations, illustrating how changes in intermediate representations
are manifested at the final detection stage. This qualitative comparison provides visual
context for the quantitative performance trends reported in Table 5, without replacing the
metric-based evaluation.

" .

(a) Visual comparison of image restoration results, including the noisy input, the FP16 DnCNN
thy 8 DnCNN output.

(b) Visualization of YOLOv11 backbone feature maps corresponding to the noisy input, FP16
DnCNN preprocessing, and INT8 DnCNN preprocessing.

(c) Final masked-face detection results produced by YOLOv11 for each input condition.

Figure 8. Qualitative comparison of the proposed denoising—detection pipeline under severe Gaussian
noise (¢ = 0.10).

To further validate the practical applicability of the proposed framework, we ex-
tended the qualitative analysis to real-world degradation scenarios beyond Gaussian noise.
Figure 9 presents representative denoising and detection results under severe motion blur,
JPEG compression, and low illumination conditions. While the visual restoration of motion-
blurred images (Figure 9a) remains inherently challenging due to the design of DnCNN for
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additive noise removal, the proposed pipeline consistently preserves essential structural
cues required for detection.

(a) Robustness against severe motion blur (Level 5).

s

(c) Robustness against low-illumination conditions (Level 5).

Figure 9. Qualitative robustness evaluation under severe real-world degradations (Severity Level 5)
using CLAHE-enhanced ROI heatmaps. From left to right: degraded input, INT8-quantized DnCNN
output, and YOLO detection result. Enlarged insets show magnified mask regions.

To support a clearer interpretation of this structural preservation, enhanced ROI
heatmaps are provided in Figure 9. Specifically, contrast-limited adaptive histogram
equalization (CLAHE) is applied to cropped mask regions to amplify local contrast, thereby
revealing noise distribution patterns and fine structural details that are less discernible
in raw RGB images. These visualizations indicate that the INT8-quantized denoising
retains critical ROI structures across all degradation types, enabling stable bounding box
localization. Consequently, the detector successfully localizes masked faces under all tested
scenarios, reinforcing the robustness of the proposed quantized inference pipeline against
diverse real-world environmental distortions.

Overall, these desktop observation results provide a hardware-neutral assessment of
noise robustness and establish a controlled baseline for interpreting the quantized inference
behavior on the Jetson AGX Orin in Section 4.4.

4.4. Quantization Stability on Jetson AGX Orin

This subsection investigates how reduced numerical precision affects denoising ro-
bustness and downstream detection accuracy when deploying the proposed pipeline on
the NVIDIA Jetson AGX Orin. In contrast to the desktop evaluation in Section 4.2, which
analyzes noise robustness under controlled conditions, this section focuses on the stability
of detection accuracy across FP16 and INT8 DnCNN variants on an embedded platform.

Unless otherwise specified, all detection accuracy metrics (Precision, Recall, mAP@0.5,
and mAP@0.5:0.95) reported in this subsection are computed over the full FMLD validation
set (7148 images). However, to enable controlled and repeatable runtime profiling on the
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embedded platform, runtime-related measurements (FPS, power consumption, energy
efficiency) are evaluated using a fixed, class-balanced subset of 100 validation images.

Table 6 reports detection performance under severe Gaussian noise (02, j = 0.10),
together with the corresponding throughput for reference. YOLO-only inference exhibits a
severe degradation in robustness: although precision remains high (0.8921), recall collapses
to 0.1427 due to missed detections, resulting in a substantial drop in localization accuracy
(mAP@0.5 = 0.5223). This phenomenon is consistent with the noise sensitivity trends
observed in Section 4.2 and highlights the necessity of denoising for stable detection on
edge hardware.

Table 6. Combined quantitative comparison of detection performance and runtime efficiency on
Jetson AGX Orin under severe noise ((712” i = 0.10). The proposed INTS Parallel pipeline achieves a
favorable trade-off between accuracy and speed.

Model/Setting Precision Recall mAP@0.5 mAP@0.5:0.95 FPS
YOLO (Clean) 0.8649 0.8031 0.8426 0.5893 14.58
YOLO (Noise) 0.8921 0.1427 0.5223 0.3238 26.09
DnCNN FP16 (Serial) 0.8387 0.4269 0.6427 0.4369 4.42
DnCNN FP16 (Parallel) 0.8465 0.4274 0.6464 0.4397 5.82
DnCNN INTS (Serial) 0.8384 0.4172 0.6367 0.4364 6.24
DnCNN INTS (Parallel) (Ours) 0.8471 0.4154 0.6402 0.4407 7.66

When DnCNN preprocessing is applied, detection performance is substantially re-
stored. The FP16 variant achieves an mAP@0.5 of 0.6464, effectively mitigating the noise
impact. Notably, the INT8 model maintains competitive accuracy (mAP@0.5 = 0.6402), with
less than 1% degradation relative to FP16, demonstrating that aggressive quantization does
not compromise denoising robustness on the embedded platform.

This behavior is consistent with prior observations on quantization-induced regular-
ization effects. By constraining the dynamic range of activations, quantization can suppress
minor perturbations and promote more stable feature representations [3]. Related studies
further report that quantization reduces overfitting in noisy or perturbed environments [9]
and improves in-distribution consistency in low-precision networks [10]. In addition,
integer-arithmetic inference has been shown to preserve semantic fidelity with minimal
degradation in detection backbones [7]. While this effect is not claimed as a novel theoretical
contribution, the empirical stability observed here aligns well with these prior findings.

Overall, the results demonstrate that INT8 quantization preserves the robustness of
DnCNN-based denoising while maintaining detection accuracy comparable to higher-
precision models.

4.5. Real-Time Edge Efficiency on Jetson AGX Orin

This subsection evaluates whether the proposed denoising—detection pipeline can
operate effectively in real time on the NVIDIA Jetson AGX Orin. While Section 4.3 analyzed
detection accuracy stability under different quantization levels, the present analysis focuses
on throughput, power consumption, and energy efficiency, which are critical metrics for
power- and resource-constrained embedded systems.

Table 7 summarizes the throughput, power usage, and energy efficiency (FPS/W) for
each pipeline configuration. A subset of 100 validation images was used to measure stable
power metrics. Notably, the baseline detector under noise achieves 26.09 FPS, effectively
satisfying standard high-speed real-time requirements (>20 FPS). However, as discussed in
Section 4.3, this speed gain comes at the cost of a severe collapse in detection performance,
making the noise-only condition impractical.
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Table 7. Performance comparison of runtime throughput, power consumption, and energy efficiency
on Jetson AGX Orin. Energy metrics are measured over the validation subset (100 frames). The
proposed INT8 Parallel pipeline demonstrates the best balance, achieving 1.222 FPS/W.

Pipeline FPS AvgPower (W) MaxPower (W) Energy (Wh) FPS/W
YOLO-only (Clean) 14.58 5.59 6.99 0.010 2.671
YOLO-only (Noise) 26.09 6.77 7.19 0.007 4.000
DnCNN FP16 (Parallel) 5.82 5.79 6.08 0.028 0.982
DnCNN INTS8 (Parallel)  7.66 5.93 6.18 0.023 1.222

To restore accuracy within a reasonable computational budget, our pipeline leverages
parallel CPU-GPU execution and INT8 quantization. As shown in Table 7, introducing
DnCNN restores robustness but incurs computational overhead. However, the proposed
INT8 quantization significantly mitigates this burden. The INT8 Parallel pipeline
achieves 7.66 FPS, representing a 31.6% throughput improvement over the FP16 Parallel
baseline (5.82 FPS). This confirms that integer-arithmetic inference effectively accelerates
the denoising workload on the Jetson edge platform.

Furthermore, the energy efficiency analysis highlights the benefits of quantization.
While the YOLO-only baseline exhibits high throughput-to-power efficiency (4.00 FPS/W),
it fails to detect targets under noise. Among the denoising pipelines, the proposed INT8
parallel model achieves an efficiency of 1.222 FPS/W, representing a 24.4% improvement
over the FP16 implementation (0.982 FPS/W). This indicates that INT8 quantization not
only accelerates inference speed but also effectively reduces the energy cost per frame,
enhancing the sustainability of edge surveillance systems.

It should be noted that real-time object detection does not universally require 30 FPS
operation; depending on the application, frame processing rates of approximately 3-10 FPS
can be sufficient when end-to-end latency remains bounded, as reported in prior stud-
ies [35]. By balancing throughput (7.7 FPS), accuracy (mAP retention), and energy efficiency
(1.222 FPS/W), the proposed INT8+Parallel framework offers the most favorable configura-
tion for robust real-time deployment on the Jetson AGX Orin.

5. Discussion

This section discusses the empirical observations, limitations, and system-level impli-
cations of the proposed noise-resilient masked-face detection framework.

5.1. Quantization Effects and Interpretation

An important empirical observation from our experiments is that low-bit quantized
DnCNN models occasionally exhibit performance comparable to, or slightly exceeding,
their full-precision counterparts under mild noise conditions. Similar behaviors have been
reported in prior studies on quantized inference, where reduced numerical precision con-
strains activation dynamics and limits sensitivity to small perturbations. It is emphasized
that this phenomenon is reported here as an empirical observation at the system level, rather
than as a claimed noise suppression mechanism or theoretical contribution. The primary
contribution of this work lies in the system-level integration and validation of quantized
denoising for robust detection, rather than in proposing a new regularization principle.

It should be noted that the observed robustness gain under quantization should not be
interpreted as a definitive noise suppression mechanism. Rather, quantization constrains
the numerical dynamic range of activations, which may indirectly stabilize inference under
mild noise conditions by reducing sensitivity to small perturbations. This explanation is
provided as a retrospective and empirical interpretation rather than a claimed theoretical
contribution, and alternative interpretations—such as effective model capacity reduc-

https:/ /doi.org/10.3390/ electronics15010143


https://doi.org/10.3390/electronics15010143

Electronics 2026, 15, 143

20 of 24

tion—cannot be excluded. Accordingly, the reported behavior should be interpreted within
this bounded empirical context, rather than as evidence of a causal regularization effect.

Beyond the empirical observations, a plausible interpretation of the improved per-
formance of quantized models under low-noise conditions can be discussed from the
perspective of numerical stability and activation distribution compression. Low-bit quanti-
zation effectively limits the dynamic range of intermediate activations, which suppresses
minor fluctuations caused by residual noise and prevents excessive amplification of such
variations through successive layers. When the input noise level is moderate, this implicit
constraint can stabilize feature propagation and lead to more consistent inference behavior.
As noise becomes more severe, however, such compression may also attenuate semantically
meaningful features, diminishing its beneficial effect. This suggests that the apparent
robustness gain of quantized inference is most pronounced within a practical noise regime
and may reflect a form of survivorship bias in the observed operating range, rather than a
universal robustness property under extreme corruption conditions.

5.2. Noise Modeling and Robustness Scope

In this study, additive Gaussian noise was adopted as a controlled baseline to en-
able reproducible robustness analysis and direct comparison with standard denoising
benchmarks. Gaussian corruption provides a well-established proxy for high-frequency
sensor noise and compression artifacts, allowing systematic evaluation of noise-induced
performance degradation.

To reflect realistic operating conditions, noise variance was incrementally increased
to analyze robustness across distinct degradation regimes. Qualitative and quantitative
2

results indicate that up to oy,

sistent facial representations sufficient for reliable detection, even under visually severe

= 0.10, the proposed pipeline maintains structurally con-

corruption. This range therefore represents the upper bound of stable operation for edge-
based vision sensors, where perceptual recognition remains possible despite significant
noise contamination.

Although real-world degradations often involve mixed effects such as motion blur, low
illumination, and compression artifacts, the controlled Gaussian setting allows isolation
of noise-related failure mechanisms. Complementary qualitative evaluations under such
non-Gaussian conditions further suggest that the proposed denoising—detection pipeline
preserves essential structural cues beyond the strict Gaussian assumption, supporting its
practical applicability.

5.3. Performance Boundaries and Failure Modes

Figure 10 illustrates the progressive degradation of detection performance as noise
severity increases beyond the stable operating range, using an 8-bit quantized DnCNN
followed by YOLO-based detection.

At Ui2nj = 0.10 (Figure 10a), detection remains stable and confident for both masked
faces. Although the input exhibits heavy grain noise, core facial structures such as contours
and mask boundaries are sufficiently preserved by the denoising stage, allowing the
detector to operate within a practical “safe zone.” This noise level therefore defines the
effective operational limit of the proposed pipeline.

2

As noise increases to O’inj

where denoising begins to introduce over-smoothing effects. While detections are still

= 0.15 (Figure 10b), the system enters a transition regime
produced, confidence scores become unstable, particularly for faces with weaker contrast or

partial occlusion. For example, the confidence of the left masked face decreases from 0.63 to
0.37, indicating the onset of structural attenuation that directly impacts detection reliability.
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(a) Limit ((Tian = 0.10): Safe Zone. The system successfully detects both masked faces with high

imit.

confidence, representing the effective operational 1
: T ™

3 =

(b) Failure Start (‘Tiznj = 0.15): Over-smoothing. As noise increases, the denoised output exhibits

excessive smoothing, causing a significant drop in detection confidence (e.g., left face: 0.63 — 0.37),
indicating the onset of instability.

(c) Total Failure (Uﬁlj = 0.20): Feature Collapse. Under extreme corruption, the structural features

of the left face are lost (Feature Collapse), resulting in a missed detection.

Figure 10. Qualitative visualization of system failure boundaries and performance degradation under
extreme noise conditions.

Under extreme corruption at Uﬁlj = 0.20 (Figure 10c), denoising is no longer able to
recover semantically meaningful facial features. Patch-wise residual estimation collapses
fine-scale structures, resulting in feature collapse and eventual missed detections. This fail-
ure mode is characterized not by erroneous classifications, but by the absence of detectable
bounding boxes, reflecting a fundamental loss of discriminative information.

These observations indicate that performance degradation beyond Ui2r1j = 0.10 arises
from intrinsic limitations of image restoration under extreme noise, rather than from
deficiencies in the proposed framework. The transition from noise-robust operation to
feature-collapse-driven failure defines a practical system boundary, beyond which pre-
processing and detection are no longer effective. Systematic extension to adaptive noise
modeling or cross-patch contextual restoration is therefore identified as an important
direction for future work.

5.4. System-Level Implications for Edge Deployment

From a system perspective, the proposed framework is directly applicable to a range
of edge-based vision systems, including intelligent surveillance cameras, access-control
terminals, healthcare monitoring platforms, and perception modules for human-robot
interaction. In such systems, robustness to image degradation, low-latency inference, and
limited computational resources are critical constraints. The proposed noise-aware and
quantization-friendly design explicitly addresses these constraints through lightweight
preprocessing, low-bit inference, and parallel CPU-GPU execution.
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The current evaluation focuses on a single-stream, fixed-resolution scenario, which
reflects a common operational mode for embedded vision sensors. Specifically, the patch
size was determined through preliminary profiling to identify the optimal operating point
that balances GPU compute density with memory transfer latency. We observed that
the selected patch dimension maximizes the throughput of the asynchronous CPU-GPU
pipeline on the Jetson AGX Orin. Deviating from this optimal size (e.g., larger patches)
resulted in memory bandwidth saturation and increased single-inference latency, which
disrupted the continuous flow of the asynchronous pipeline. Therefore, the patch size was
treated as a fixed hardware-aware design parameter to ensure stable real-time performance,
rather than a tunable hyperparameter. Extensions to dynamic sizing or multi-stream
scheduling are considered valuable directions for future investigation.

Power consumption was evaluated using the NVIDIA Jetson AGX Orin’s built-in
monitoring interfaces during runtime execution, rather than external power measurement
instrumentation. The reported average and peak power values in Table 7 therefore reflect
system-level readings collected under fixed power mode and workload conditions, and
are intended to provide a relative comparison of energy efficiency across pipeline con-
figurations rather than absolute power characterization. While such measurements may
be affected by platform-specific variability, they are sufficient for comparing the relative
efficiency of FP16 and INTS pipelines under identical experimental settings.

A direct speed—accuracy comparison with other lightweight denoising models on the
same edge platform was not conducted in this study. While such an evaluation would fur-
ther strengthen the real-time performance analysis, the selection of DnCNN was motivated
by its well-established balance between restoration quality, architectural simplicity, and
blind denoising capability, as demonstrated in the desktop benchmarks. In contrast, alterna-
tive models such as FFDNet require explicit noise-level estimation, and transformer-based
models incur substantial computational overhead that limits their suitability for embedded
deployment. Comprehensive edge-level comparisons across denoising architectures are
therefore identified as an important direction for future work.

6. Conclusions

This study proposed a noise-resilient masked-face detection framework that integrates
DnCNN-based image denoising with the YOLOv11 detector, together with low-bit quantiza-
tion and an optimized edge-device execution pipeline. Experimental results demonstrated
that high-frequency noise severely degrades masked-face detection performance, and that
lightweight residual denoising prior to detection substantially improves robustness under
moderate to severe degradation.

Comprehensive evaluations showed that 16-bit and 8-bit quantized denoisers preserve
most of the denoising benefit while significantly reducing computational cost. Edge deploy-
ment experiments on the NVIDIA Jetson AGX Orin further confirmed that quantization
and parallel CPU-GPU execution enable near-real-time operation under noisy conditions,
providing a practical foundation for deployable edge-Al systems.

Future work will focus on extending the proposed framework to continuous video
pipelines, multi-stream scenarios, and broader real-world degradation models. Further-
more, we plan to integrate the framework into concrete edge applications such as intelligent
surveillance cameras, access-control terminals, and healthcare monitoring platforms. Ex-
ploring its applicability to multi-task facial analysis—including facial landmark detection,
identity recognition, and physiological signal estimation—trepresents another promising
direction for future research.
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