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Abstract

Foot gesture recognition using a continuous-wave (CW) radar requires implementation on
edge hardware with strict latency and memory budgets. Existing structured and unstruc-
tured pruning pipelines rely on iterative training–pruning–retraining cycles, increasing
search costs and making them significantly time-consuming. We propose a NAS-guided
bisection hybrid pruning framework on foot gesture recognition from a continuous-wave
(CW) radar, which employs a weighted shared supernet encompassing both block and chan-
nel options. The method consists of three major steps. In the bisection-guided NAS struc-
tured pruning stage, the algorithm identifies the minimum number of retained blocks—or
equivalently, the maximum achievable sparsity—that satisfies the target accuracy under
specified FLOPs and latency constraints. Next, during the hybrid compression phase, a
global L1 percentile-based unstructured pruning and channel repacking are applied to
further reduce memory usage. Finally, in the low-cost decision protocol stage, each pruning
decision is evaluated using short fine-tuning (1–3 epochs) and partial validation (10–30% of
dataset) to avoid repeated full retraining. We further provide a unified theory for hybrid
pruning—formulating a resource-aware objective, a logit-perturbation invariance bound
for unstructured pruning/INT8/repacking, a Hoeffding-based bisection decision margin,
and a compression (code-length) generalization bound—explaining when the compressed
models match baseline accuracy while meeting edge budgets. Radar return signals are
processed with a short-time Fourier transform (STFT) to generate unique time–frequency
spectrograms for each gesture (kick, swing, slide, tap). The proposed pruning method
achieves 20–57% reductions in floating-point operations (FLOPs) and approximately 86%
reductions in parameters, while preserving equivalent recognition accuracy. Experimental
results demonstrate that the pruned model maintains high gesture recognition performance
with substantially lower computational cost, making it suitable for real-time deployment
on edge devices.

Keywords: gesture recognition; RADAR; STFT; Fourier transform; CW; network pruning;
lightweight network; bisection-method

1. Introduction
Gesture recognition has emerged as a key enabler for natural human–machine interac-

tion across diverse application domains. Beyond its traditional roles in sports rehabilita-
tion [1] and immersive virtual reality training [2–4], gesture sensing plays an increasingly
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critical role in modern industries such as smart manufacturing and autonomous driving,
where the timely and accurate interpretation of human movements directly affects opera-
tional safety and efficiency. Despite these advances, most research efforts have concentrated
on hand gestures or full-body postures, while foot gestures have received relatively little
attention, even though they provide significant practical advantages in scenarios requiring
hand-free operation or enhanced accessibility.

Foot gesture recognition is particularly valuable in environments where conventional
interaction methods are impractical or inconvenient. In smart buildings, users may trigger
access systems, elevators, or lighting through simple foot motions when carrying objects
or when their hands are otherwise occupied. Existing smart entry solutions are typically
bluetooth-based and rely on proximity detection rather than intentional action, which
often leads to unintended elevator calls or miscoordination between automated doors and
elevator systems, introducing operational bottlenecks. In hospital environments, foot-based
interaction provides a hygienic and contactless alternative for medical staff and patients,
reducing infection risks when controlling doors, service robots, or equipment. Similarly, in
smart vehicles, foot gestures can be leveraged to manage infotainment systems or auxiliary
controls without requiring the driver to release the steering wheel, thereby enhancing both
convenience and driving safety.

Although various non-contact sensors have been applied to gesture
recognition—including cameras, infrared (IR), Bluetooth, and LiDAR—each sensor has
critical limitations for these scenarios. Camera-based systems inherently raise privacy
concerns in personal or medical spaces and often depend on favorable lighting conditions,
which restricts their robustness. IR sensors are sensitive to ambient thermal variations and
provide only limited-range motion detection. Bluetooth-based systems primarily function
through device proximity rather than explicit gesture recognition, which undermines inten-
tional control. LiDAR offers precise spatial mapping but remains costly, power-intensive,
and less practical for compact embedded systems.

In contrast, radar-based gesture recognition provides a robust and privacy-preserving
alternative. Radar does not capture visual information, thereby eliminating privacy is-
sues while maintaining reliable performance across diverse environmental conditions. It
is inherently resilient to variations in lighting or temperature, operates with low power
consumption, and can be miniaturized for seamless integration into embedded platforms.
Importantly, radar captures Doppler frequency shifts associated with fine-grained foot
motions, enabling accurate classification of subtle gestures. These attributes make radar par-
ticularly well-suited for foot gesture recognition in environments where privacy, hygiene,
convenience, and robustness are essential.

Motivated by these needs, this paper proposes a radar-based foot gesture recogni-
tion system for embedded applications such as smart buildings, hospitals, and smart
vehicles. Continuous-wave (CW) radar signals are processed through short-time Fourier
transform (STFT) to generate spectrogram representations, which are then classified using
a lightweight convolutional neural network (CNN). To enable deployment on resource-
constrained devices, we introduce a hybrid pruning scheme that combines block-wise
structured pruning with unstructured weight pruning. This approach significantly com-
presses the network while preserving recognition accuracy, making it suitable for real-time,
privacy-preserving gesture recognition in edge environments.

Radar-based foot gesture recognition enables hands-free interaction and privacy-
preserving control in scenarios where cameras are impractical, such as clinical or industrial
environments. However, MCU- or CPU-class devices impose strict constraints on limited
computing power and small memory size. Conventional STFT-based spectrograms (e.g.,
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256 × 256 with 1–2 s windows) face these challenges, motivating efficient yet accurate
compression strategies.

Existing model compression and neural architecture search (NAS) frameworks primar-
ily focus on accuracy–efficiency tradeoffs but often rely on repetitive train–prune–retrain
cycles [5–7]. Few methods jointly optimize model search and pruning under explicit hard-
ware constraints such FLOPs or latency, which limits their practical implementation on
CPU-class edge devices [8–10].

This work addresses these limitations by introducing a NAS-guided bisection pruning
framework that integrates structural and unstructured compression with low-cost de-
cision protocols. Our key contributions are fourfold. First, the bisection-guided NAS
structured pruning efficiently identifies a semi-optimal number of retained blocks or
equivalent sparsity ratio that satisfies a target accuracy within defined FLOP or latency
constraints, effectively reducing search complexity. Second, the hybrid compression ap-
proach applies to a global L1-norm-based unstructured pruning, followed by channel-
wise repacking to translate sparsity into structural reductions. Third, a low-cost decision
protocol—consisting of short fine-tuning, partial validation on data subsets, and margin-
based thresholding—allows reliable evaluation without repeated full retraining cycles.
Finally, extensive deployment validation across popular lightweight backbones such as
MobileNetV3/V2, EfficientNet-B0, and SqueezeNet demonstrates a consistent balance be-
tween accuracy and efficiency, significantly reducing FLOPs, parameter counts, and latency
on CPU-embedded devices. Unlike prior channel-only, unstructured-only, or one-shot
NAS approaches that still require dense evaluations, our framework embeds a bisection
mechanism within NAS and couples it with hybrid sparsity. This design explicitly mini-
mizes search and training cost while ensuring deployment feasibility on CPU-embedded
edge platforms.

2. Related Works
Recent studies on radar-based foot gesture recognition have made notable progress

in achieving efficient on-device inference through compact input design, lightweight ar-
chitecture, and hybrid compression strategies. In our prior works [2,5], high-compression
micro-Doppler representations have demonstrated that reducing radar input dimension
can enhance synergy with structured pruning and NAS, maintaining accuracy while lower-
ing computational load. Similarly, transitioning from computationally intensive 3D FFT
stacks to 2D range-Doppler maps (RDM) or even FFT-free time-domain signals has shown
promise in reducing memory and latency for edge deployment [11,12]. Graph-based frame-
works have also enabled real-time performance on embedded hardware by mapping sparse
MIMO radar data into message-passing neural networks (MPNNs) [13]. Furthermore,
integrated compression pipelines combining structured pruning, NAS, quantization, and
lightweight backbones have narrowed the resource gap to MCU- or SoC-class devices
while preserving gesture dynamics through hybrid CNN–temporal designs [14]. These
approaches underscore radar’s suitability for hands-busy and privacy-sensitive applica-
tions such as automotive kick sensors, in-cabin interfaces, and smart-home control. Table 1
summarizes their core technologies of radar-based foot gesture lightweight recognition.

Despite these advances, existing methods remain fragmented across different opti-
mization layers. Most focus on either compact input signal representation or network-
level compression but seldom address the combined optimization of both under explicit
hardware constraints (e.g., FLOPs, latency, or computing power). Moreover, iterative
search–prune–retrain pipelines remain computationally expensive, limiting scalability for
diverse backbones or deployment environments. Consequently, there is a critical need
for a unified framework that jointly integrates search-guided structural pruning, hybrid
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sparsity conversion, and cost-aware decision mechanisms to achieve accuracy-efficient,
hardware-constrained learning for radar-based foot gesture recognition.

Table 1. Survey of lightweight radar-based foot gesture recognition methods.

Tech. Fields Key Approaches Key Contributions Refs.

Radar sensing &
representations

FMCW micro-Doppler for
foot gestures

High-compression micro-Doppler signatures enable compact CNN
inputs while keeping high recognition for foot kicks, taps, pushes;
hands-free operation suggested for vehicle trunk and home control.

[2,10]

Range-Doppler/
Range-Angle maps

Standard 2-D RDM pipeline with light CNN/Bi-LSTM; extended to
MIMO fusion of range, velocity, angle to raise separability and

robustness across view angles.
[11,12]

Sparse point clouds
(MIMO)

Graph NN on radar point clouds runs real-time on Raspberry Pi;
~8× faster than prior SOTA while maintaining accuracy → viable

edge path.
[13]

Lightweight time-domain
features

FFT-free preprocessing collapses 3-D radar cubes to few 1-D
streams

(range/azimuth/elevation/magnitude), cutting compute before
NN.

[14]

Robustness in clutter End-to-end mmWave pipeline with interference-aware modeling
for similar/overlapping gestures in crowded scenes. [15]

Lightweight
model design

Structured pruning + NAS
Block/channel structured pruning guided by NAS to auto-select

compact backbones for radar gestures with minimal accuracy drop;
edge-deployable CNNs.

[16]

Mobile-class backbones
MobileNet-inspired or multi-branch lightweight CNNs with

attention keep accuracy at low FLOPs; practical on
ARM/Edge-TPU.

[17]

Quantization for edge 60 GHz FMCW pipeline with five features and slim classifier fits in
<280 kB flash; 8-bit inference with high F1 → MCU/SoC feasibility. [18]

Hybrid
CNN–Transformer/TCN

CNN with temporal modeling (TCN/Transformer) improves
dynamic gesture separability at modest cost; suited after front-end

compression.
[19]

Compression–
accuracy trade-offs

Edge-optimized
classifiers

Comparative study shows Mobile-class nets keep accuracy with
large latency/energy savings vs. heavy CNNs; guidance for radar

HGR on constrained HW.
[17]

Feature- vs. model-level
reduction

Foot-specific: compressing radar signature images reduces input
size drastically yet sustains accuracy; model compression then

compounds gains.
[2]

Person-independent
generalization

Lightweight, FFT-free preprocessing improves cross-user stability
before compact NN, aiding domain shift. [20]

Applications

Automotive foot-HCI
Kick-sensor for door/trunk; radar-CNN pipeline detects foot kicks
under varying placements; leverages radar’s non-line-of-sight and

lighting robustness.
[21]

Hands-busy HCI Real-time mmWave gesture on Raspberry Pi demonstrates natural,
low-power control channels applicable to foot UIs. [13]

Smart-home control
Memory-tight FMCW edge pipeline points to in-appliance
deployment for privacy-preserving, touch-free control via

lower-limb cues.
[18]

FMCW radar gesture
reviews

Methodologies, datasets, signal paths (RDM/RA/point cloud), and
challenges summarized; informs design choices for foot gesture

extensions.
[22]

Foot gesture HMI
overview

Cross-sensor FGR landscape, limitations of contact/non-contact
sensing, and deployment issues; motivates radar + model

compression.
[23]
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3. Methods
3.1. Radar Data Acquisition and STFT Processing

We collected an in-laboratory radar dataset for experimental validation because no
public radar micro-Doppler dataset contains foot gesture classes suitable for this study; five
participants (one female and four male) were involved in data acquisition to obtain radar
spectrograms for each foot gesture. A continuous-wave (CW) Doppler radar operating at
24 GHz was used to record foot gesture data [14]. Four gesture classes were recorded: kick,
swing, slide, and tap. For each gesture trial, a radar transmitted a single-tone continuous-
wave signal and captured the reflected echoes from a moving foot. The received signal
undergoes cell-average CFAR (Constant False Alarm Rate) detection and denoising pre-
processing and is then transformed via a short-time Fourier transform (STFT). The STFT
produces a time–frequency spectrogram of size 227 × 227 pixels, which is converted to
a three-channel (RGB) image as the input to the CNN. The radar parameters (operating
frequency, sampling rate, and antenna beam width) were chosen to ensure distinct Doppler
signatures for different gestures. A block diagram of the CW radar system is shown on
Figure 1. The radar system was installed at a right angle (90 degrees) with respect to the
ground to ensure effective detection of foot-level motion. Data was recorded under two
radar installation heights (0.6 m and 1.5 m) and two different surface conditions (ground
and concrete floor) to ensure sufficient variability in geometry and reflection characteristics.
The sensor emitted a continuous wave transmission directed downward towards the tar-
get surface. Three installation scenarios were examined to represent typical deployment
environments: the bumper of a passage vehicle, the bumper of an SUV, and the entrance
door of a smart building. The radar configuration consists of a single transmitter-receiver
antenna pair, providing a field of view of 80◦ in the horizontal direction and 12◦ in the
vertical direction.

Figure 1. System block diagram for radar foot gesture recognition.

Figure 2 illustrates example STFT spectrograms for each gesture class. The kicking and
sliding gestures produce roughly symmetric Doppler patterns, whereas the swinging and
tapping gestures yield asymmetric frequency distributions. Variations in bandwidth reflect
the distinct kinematics of each movement. In particular, the kicking gesture generates a
strong frequency sweep from negative to positive Doppler frequencies, while the swinging
and sliding gestures share similar Doppler ranges but differ in signal amplitude. The
tapping gesture produces narrow-band spectral lines that remain over a longer time, with
intermittent bursts of higher-bandwidth energy. These unique spectro-temporal signatures
serve as the basis for classification [2]. In total, 3500 spectrogram images were collected.
For every gesture class, 600 samples were used for training and cross-validation (at a
90:10 ratio), and an additional 100 samples were reserved for evaluation. To implement foot
gesture recognition on MCU-class devices, model training is performed on a PC equipped
with an Intel Core i5-13600K processor, while inference is designed to run on an ARM 32-bit
Cortex-based MCU platform. A random 20% subset of each training class (120 images) was
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held out for validation, leaving 480 training samples per class. These images were used
to train and evaluate the CNN models. In our prior work [2], this dataset was classified
using standard networks (Google Net, ResNet, VGG, AlexNet) and a PCA-SVM, yielding
accuracy of 0.96, 0.96, 0.98, 0.97, and 0.97, respectively. The present study builds on that
dataset and focuses on compressing the CNN model to suit embedded applications.

Kick 

      
Object 

 
     

Slide 

 
     

Swing 

      
Tapping 

 
     

Figure 2. STFT Spectrograms for five classes: Kick, Object, Slide, Swing, and Tapping (test dataset).

3.2. Proposed Hybrid Pruning Framework for Gesture Recognition

The proposed hybrid pruning scheme is designed to enable real-time inference on
CPU-class edge devices by introducing a novel network compression method to the
baseline model.

Figure 3 illustrates the proposed hybrid pruning framework for foot gesture recogni-
tion, consisting of three sequential steps as follows:

First, NAS-guided bisection pruning employs a weight-sharing supernet that spans
block and channel configurations. A bisection rule is used to efficiently determine the
minimal number of retained blocks (B*) or the maximal sparsity (r*) required to meet
the target accuracy under FLOPs and latency constraints. Second, global L1-percentile
unstructured pruning is applied, with optional channel repacking to convert weight sparsity
into practical structural speedups in real deployment. Third, each pruning decision is
verified using a cost-efficient protocol featuring short fine-tuning (1–3 epochs) and partial
validation (10–30% of the dataset), minimizing the need for repeated full retraining.

By sequentially integrating these steps, the framework produces a highly compact
model suitable for edge devices, enabling efficient and accurate foot gesture classification
from STFT spectrogram inputs.
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Figure 3. Proposed hybrid pruning framework for foot gesture recognition.

The baseline models under consideration are lightweight CNN architectures suitable
for real-time inference. The STFT spectrogram images are used as input to CNN. Four
network backbones were evaluated: MobileNetV3, MobileNetV2 [24–26], EfficientNet-
B0 [27], and SqueezeNet [28]. These models are selected for their small size and low
FLOPs requirements. Each CNN was trained using the categorical cross-entropy loss
and Adam optimized with sufficient epochs to ensure convergence. During training, the
learning curves were monitored for the accuracy and loss trajectories for each network,
demonstrating stable convergence with the chosen training protocol. Baseline training
used the same learning rate = 0.01, batch size = 64, L2 weight decay = 1 × 10−4 for all
backbones. Unless specified otherwise, baseline and hybrid models were trained using
identical procedures. Only the pruning, quantization, or NAS parameters explicitly stated
in the main text were varied.

3.3. Bisection-Guided NAS Structured Pruning

Bisection-guided NAS structured pruning operates at the block level (e.g., residual,
inverted-bottleneck, or inception blocks), excluding the classifier head and input stem from
pruning. A fixed drop order for blocks is first established, using either depthwise suffix
order or an important ranking metric. For any candidate configuration retaining B blocks,
the network is instantiated by simultaneously removing the last N − B blocks according
to this order. This preserves early, high-resolution processing and leverages the observed
empirical redundancy in later blocks, as evidenced by plateaus in block–accuracy curves.
Each pruned candidate undergoes brief fine-tuning to recover any loss of accuracy.

The candidate space is defined as a weight-sharing network parameterized by block
retention, expansion ratios (t ∈ {1, 3, 4, 6}), depthwise kernel sizes (k ∈ {3, 5}), optional
squeeze-and-excitation (SE) modules and output channels quantized on 8/16-aligned grids.
The pruning objective is formulated as:

max {Accval(B) ≥ τ }

subject to FLOPs(B) ≤ Fmax, Latency(B) ≤ Lmax, Params(B) ≤ Pmax. (1)

The bisection process sequentially chooses a single decision variable—the number of
retained blocks B*. At each iteration, the midpoint candidate is evaluated with short fine-
tuning (1–3 epochs) and partial validation (10–30% subset), repeated twice for robustness.
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A configuration is accepted if Acc ≥ τ + ϵ and all resource constraints are satisfied; the
interval is iteratively halved until the stopping criterion is met—either hi − lo ≤ 1 block
(for B*) or ≤ δ (for r*). The parameters were set as follows: τ = 0.92, ϵ = 0.3% point, and
δ = 0.1. Here, τ represents the accuracy target, ϵ the accuracy margin, and δ the sparsity
goal. This bisection search reduces the required evaluations from N to ⌈log2N⌉, efficiently
identifying a semi-optimal “knee” point where further block removal would precipitate a
rapid accuracy decline, thus balancing deployment efficiency and accuracy retention.

3.4. Unstructured Pruning and Quantization

Building on the structured pruned backbone, we apply global magnitude-based un-
structured pruning, quantization, and channel repacking in sequence. The target sparsity
r* is selected via a bisection search. Specifically, a global L1 percentile threshold θ(r) is
computed over all convolution and linear layer weights W as the (1− r) quantile of their ab-
solute values | W |, and weights below this threshold θ(r) are zeroed. After pruning, batch
normalization (BN) statistics are re-estimated on a held-out calibration buffer, followed by
a short fine-tuning phase (1–3 epochs) to recover accuracy.

Each pruning candidate is evaluated on a validation subset v ∈ [0.1, 0.3] with m = 5
repeated trials; the candidate is accepted if it meets the accuracy threshold while satis-
fying FLOPs, latency, and parameter constraints. The bisection interval shrinks until a
convergence criterion is reached.

To further reduce model size and accelerate inference, the remaining weights and
optional activations are quantized to 8-bit precision using symmetric per channel scaling
for convolution layers and per tensor scaling for linear layers. The quantization scales
are calibrated on a small unlabeled dataset to mitigate the influence of outliers. This
quantization approximately halves parameter memory relative to 16-bit floating point and
improves cache locality on edge CPUs.

Finally, repacking converts fine-grained sparsity into structural efficiency by removing
channels with near-zero activation energy, measured over a calibration set (e.g., mean
activation magnitude). For depthwise–pointwise convolution pairs, the corresponding
depthwise filter and input channel of subsequent pointwise convolution are pruned jointly.
Residual and concatenation branches are pruned consistently to maintain network integrity.

Thus, the hybrid pipeline combines block level removal for coarse compute reduc-
tion with fine-grained unstructured pruning, quantization, and repacking for additional
compactness and real latency improvements, enabling efficient edge deployment.

3.5. Theoretical Analysis of the Hybrid Pruning

A. Resource-Constrained Objective Function

We formalize the proposed hybrid pruning framework with the following elements:
(i) accuracy preservation under unstructured pruning, INT8 quantization, and chan-
nel repacking; (ii) recognition probability and statistical confidence bounds for the
bisection-guided decision rule; and (iii) compression-based generalization after pruning
and quantization.

Let (x, y) ~ D. A model fθ with θ ∈ Rp output logits z = fθ(x) ∈ RK and
pθ(c|x) = so f tmax(z)c. The empirical loss L̂(θ) is cross-entropy:

L̂(θ) = E(x, y)∼ D[−logpθ
(y|x)]

Resource constraints are enforced by linear hinge penalties:

min
θϵS

L̂(θ) + λF

[
FLOPs(θ)

Fmax
− 1

]
+
+ λL

[
Lat(θ)
Lmax

− 1
]
+
+ λP

[
Params(θ)

Pmax
− 1

]
+

(2)
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where [ u]+ = max(0, u), S is the supernet search space (retained blocks B, expansion
t ∈ {1, 3, 4, 6}, depthwise kernel k ∈ {3, 5}, SE on/off, 8/16-aligned channels).

B. Logit-Perturbation Bounds and Classification Invariance

After pruning, quantization, and channel repacking, θ′ = θ +∆θ and ∆z(x) = fθ′(x)−
f θ(x) [29]. With 1-Lipschitz activations and layer spectral norms sl = ∥Wl∥2, the upper
bound holds:

∥∆z(x)∥2 ≤
(
∏L

l=1 sl

)
∑L

l=1
∥∆W l∥2

sl
∥x∥2 + Ξrepack (3)

Hence, the total distortion is governed by the global scale ∏ 𝓁sl and the relative
per-layer perturbation magnitudes ∥∆W l∥2/sl . We bound each component:

• Unstructured pruning (global L1 percentile):

∥∆W l ∥F ≤ θl(r)
√

kl (4)

with threshold θl(r) at target sparsity r, and kl zeroed weights.

• INT8 quantization (symmetric, per-channel):

∥∆W l ∥F ≤ 1
2

∆max
𝓁

√
d𝓁 , ∆max

𝓁 = maxc∆𝓁,c (5)

where d𝓁 is the number of weights in layer 𝓁.

• Channel repacking (activation-energy-based):

Ξrepack ≤ ∑c∈C ∥ Wout [:, c] ∥2 ac ≤ η (6)

with RMS activation ac and budget η.

Combining (3)–(6) yields the consolidated perturbation inequality:

∥∆z(x)∥2 ≤
(
∏k sk

)
∑l (

θl(r)
√

kl +
1
2

∆max
𝓁

√
d𝓁

sl
) ∥x∥2 + η, (7)

Let the logit margin be γ(x) = zy − max
j ̸=y

zj. Since ∥ ∆z(x) ∥∞≤∥ ∆z(x) ∥2, classifica-

tion invariance holds whenever

∥ ∆z(x) ∥2<
1
2

γ ⇒ arg max
c

z′c = arg max
c

zc (8)

where γ is the minimum validated margin. Equations (7) and (8) constitute the accuracy-
preservation (design-invariance) criterion.

C. Bisection Decision Rule: Recognition Probability and Statistical Reliability

The bisection acceptance rule is

Acc ≥ τ + ϵ, (9)

with target τ and tolerance ε. For nval validation samples and observed accuracy p̂ (a
Bernoulli mean), Hoeffding’s inequality [30] gives

Pr( | p̂ − p | ≥ ε) ≤ 2e−2neffε
2
, neff = m · v · nval, (10)
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where m is the number of repeats and v the validation fraction. For confidence 1 − δ,

ε =

√
ln(2/δ)

2neff
. (11)

Given a logit perturbation radius ∥ ∆z(x) ∥∞≤ εz, the softmax recognition probability
lower bound is

pθ′(y | x) ≥ 1
1 + (K − 1)exp{−γ(x) + 2εz}

(12)

which reduces in the baseline (no hybrid compression) to pθ(y | x) ≥ [1 + (K − 1)e−γ(x)]−1

by setting εz = 0.

D. Compression-Based Generalization after Pruning/Quantization

Let the compressed model’s code length be S bits (structural header Shd, sparse indices,
quantized values). An Occam–PAC-Bayes style bound [31–33] gives

(
θ′
)
≤ R̂

(
θ′
)
+

√√√√√Sln2 + ln
(

1
δ

)
2ntr

, (13)

with
S ≲ Shd + slog2(

e deff
s

)︸ ︷︷ ︸
sparse indices

+ sb︸︷︷︸
INTb values

(14)

where s is the number of nonzero after pruning, deff is effective dimension after repacking,
and b = 8 for INT8. Hybrid pruning reduces both s and deff, it effectively tightens the
generalization gap in the PAC-Bayes bound, tightening (13) at matched empirical risk.

E. Unified Compression–Optimization

For compact citation, we summarize the hybrid pruning objective:

min
θϵS

L̂(θ) + ∑
q∈{F,L,P}

λq

[
Rq(θ)

Rq,max
− 1

]
+

s.t.
(
∏k sk

)
∑l

θl(r)
√

kl +
1
2

∆max
𝓁

√
d𝓁

sl
∥x∥2 + η︸︷︷︸

Repacking

<
1
2

γ , (15)

ε =

√
ln(2/δ)

2neff
, pθ′(y | x) ≥ 1

1 + (K − 1)exp{−γ(x) + 2εz}
,

R
(
θ′
)
≤ R̂

(
θ′
)
+

√√√√√Sln2 + ln
(

1
δ

)
2ntr

.

Equation (15) unifies optimization (budgets), invariance (logit stability), statistical
reliability (bisection), and generalization (compression), enabling an easy comparison
between the baseline and the hybrid model with a single, testable formation.

4. Results
4.1. Baselines

A radar-based foot gesture recognition system using a hybrid pruned lightweight
CNN has been developed. CW radar return signals were converted to STFT spectrograms
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and classified by a CNN whose structure was optimized via pruning. Block-wise structured
pruning via NAS followed by magnitude-based unstructured pruning yields compact
networks suitable for edge deployment.

To quantify performance, accuracy, precision, recall, and F1-score metrics were com-
puted on the test set. Let TP, TN, FP, and FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively. The metrics are defined
as follows:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(16)

Precision =
TP

(TP + FP)
(17)

Recall =
TP

(TP + FN)
(18)

F1 score = 2
Precision × Recall
(Precision + Recall)

(19)

Table 2 summarizes the baseline recognition accuracy and computational cost (in FLOPs
and model parameter count) for four backbone networks-MobileNetV3, MobileNetV2,
EfficientNet-B0, and SqueezeNet. These values serve as the reference against which the
pruned models will be compared. Figure 4 shows confusion matrices of different foot
gestures for mobile baseline networks. Mobile baseline models achieve high recognition
accuracy exceeding 93%, but at the cost of substantially larger computational demands,
with FLOPs reaching up to 287 million and memory footprints up to 15.59 MB.

 
(a) MobileNetV3 

 
(b) MobileNetV2 

 
(c) EfficientNet-B0 (d) SqueezeNet 

Figure 4. Confusion matrices of Baseline models (MobileNetV3, MobileNetV2, EfficientNet-B0,
and SqueezeNet).
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Table 2. Performance–complexity of baseline models (MobileNetV3, MobileNetV2, EfficientNet-B0,
and SqueezeNet).

Baseline
Models Acc. Precision Recall F1 FLOPs

(M)
Size
(MB)

MobileNetV3 0.94 0.943 0.939 0.939 71 5.94

MobileNetV2 0.928 0.931 0.927 0.927 287 2.78

EfficientNet-B0 0.932 0.935 0.932 0.932 27 15.59

SqueezeNet 0.928 0.931 0.927 0.927 287 2.78

4.2. Hybrid Pruning Outcomes

Figure 5 shows recognition performance vs. the kept-block count B for structured
pruning (SP) models. The vertical red line marks the block count selected by the bisection-
guided NAS defined as B∗ = min{B | Accval(B) ≥ τ} and constraints (FLOPs, latency,
parameters) are satisfied. Although Accval(B) is not strictly monotonic due to stochastic
variations, the pass/fail criterion Acc ≥ τ behaves as a quasi-monotone predicate after
batch normalization re-estimation and short fine-tuning. At each bisection step, midpoint B
is evaluated using 1–3 epochs of fine-tuning on 10–30% of the validation data and repeated
twice, and accepted if Acc > τ + ϵ. The search interval continues to shrink until the
minimum block. This process requires log2N evaluations and identifies the “knee” point
where further block removal sharply degrades accuracy.

 
(a) MobileNetV3 

 
(b) MobileNetV2 

 
(c) EfficientNet-B0 

 
(d) SqueezeNet 

Figure 5. Accuracy vs. Kept blocks for bisection-guided NAS structured pruning.

Figure 6 depicts the network reduced architecture selected by the bisection-guided
NAS pruning across the baseline backbones. Here, “operator” refers to the layer or block
operator type, with kernel size indicated when relevant (e.g., conv2d 3 × 3). The term
“conv2d” denotes a standard 2D convolutional layer, while “bneck” stands for an inverted-
residual bottleneck block, commonly referred to as MBConv or IRB, characterized by
a 1 × 1 expansion, followed by a depthwise convolution with kernel size k × k, and a
1 × 1 projection. “pool” indicates global average pooling (GAP) unless otherwise specified.



Signals 2025, 6, 66 13 of 22

“NBN” denotes layers where batch normalization is omitted. “exp size” refers to the number
of expansion channels within a bottleneck. “#out” indicates the number of output channels
for the layer or stage. “SE” designates the use of the Squeeze-and-Excitation module,
with “O” indicating presence and “–” indicating absence. “NL” stands for nonlinearity or
activation function, where “HS” is hard-swish and “RE” is ReLU. “s” represents stride, with
s = 2 indicating spatial resolution reduction by half. The parameter “t” is the expansion
ratio within the bottleneck (distinct from dilation). “c” represents the number of output
channels in a stage, and “n” indicates the number of repeated blocks in that stage. This
notation concisely specifies variable network configurations produced by NAS-guided
pruning while remaining faithful to implementation details.

Input Operator exp size #out SE NL s 
2272 × 24 conv2d, 3 × 3 – 16 – HS 2 
1122 × 16 bneck, 3 × 3 16 16 O RE 2 
562 × 16 bneck, 3 × 3 72 24 – RE 2 
282 × 24 bneck, 3 × 3 88 24 – RE 1 
282 × 24 bneck, 5 × 5 96 40 O HS 2 
142 × 40 bneck, 5 × 5 240 40 O HS 1 
142 × 40 bneck, 5 × 5 240 40 O HS 1 
142 × 40 bneck, 5 × 5 120 48 O HS 1 
142 × 48 bneck, 5 × 5 144 48 O HS 1 
72 × 48 pool, 7 × 7 – – – HS 1 
12 × 48 conv2d 1 × 1, NBN – 1024 – 

 
1 

12 × 1024 conv2d 1 × 1, NBN – 5 – – 1 

(a) MobileNetV3-SP 
 

Input Operator t c n s 

2272 × 3 conv2d, 3 × 3 – 32 1 2 
1122 × 32 MBConv1, 3 × 3 1 16 1 1 
1122 × 16 MBConv6, 3 × 3 6 24 2 2 
562 × 24 MBConv6, 3 × 3 6 32 3 2 
282 × 32 MBConv6, 3 × 3 6 64 2 2 
72 × 64 avgpool 7 × 7 – – – – 
12 × 64 conv2d 1 × 1 – 5 – 1 

(b) MobileNetV2-SP 
nput Operator #out n s SE 
2272 × 24 conv2d, 3 × 3 32 1 2 – 
1122 × 32 MBConv1, 3 × 3 16 1 1 O 
1122 × 16 MBConv6, 3 × 3 24 2 2 O 
562 × 24 MBConv6, 5 × 5 40 2 2 O 
282 × 40 MBConv6, 3 × 3 80 1 2 O 
12 × 80 conv2d 1 × 1, GAP, FC 5 – 1 – 

(c) EfficientNet-B0-SP 
 

Input Operator #out s 
2272 × 24 conv2d, 7 × 7 96 2 
1112 × 96 maxpool, 3 × 3 – 2 
552 × 96 fire(sq = 16,e1 = 64,e3 = 64) 128 – 
552 × 128 fire(sq = 16,e1 = 64,e3 = 64) 128 – 
552 × 128 fire(sq = 32,e1 = 128,e3 = 128) 256 – 
552 × 256 maxpool, 3 × 3 – 2 
272 × 256 fire(sq = 32,e1 = 128,e3 = 128) 256 – 
272 × 256 fire(sq = 48,e1 = 192,e3 = 192) 384 – 
12 × 384 avgpool 13 × 13 → FC(5) 5 1 

(d) SqueezeNet-SP 

Figure 6. Architectures selected by bisection-guided NAS for each baseline.

Table 3 and Figure 7 show recognition accuracy and structure complexity changes
before and after bisection-guided NAS structure pruning models and the confusion matrices
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of the structure pruned models, respectively. The structured-pruned models achieved
recognition performance comparable to the baselines, with substantially reduced size.
Table 3 indicates that after structured pruning, the MobileNetV2 model was compressed
to 15% of its baseline parameter count and 42.9% of its original FLOPs, while maintaining
accuracy above 95%. These results demonstrate that many convolutional blocks in the
original networks are redundant for this task.

Table 3. Performance–complexity changes: baseline vs. NAS-pruned models. An upward arrow
(↑) denotes an increase, and a downward arrow (↓) denotes a decrease; The rightward arrow (−→)
indicates how the hybrid model changes relative to the baseline model.

Network Blocks
(Baseline) Acc ∆Acc (%p) ∆FLOPs (M) Size

(MB)

MobilenetV3-SP 9 (13) 0.942 0.2 ↑ 71.1 −→ 44.0 1.05

MobilenetV2-SP 9 (18) 0.950 0.6 ↑ 373.1 −→ 160.1 0.58

EfficientNet B0-SP 7 (15) 0.936 0.4 ↑ 27.2 −→ 21.5 1.35

SqueezeNet-SP 8 (9) 0.922 0.6 ↓ 287.9 −→ 170.7 0.47

 
(a) MobileNetV3-SP (b) MobileNetV2-SP 

 
(c) EfficientNet-B0-SP (d) SqueezeNet-SP 

Figure 7. Confusion Matrices of NAS structured-pruned models (MobileNetV3-SP, MobileNetV2-SP,
EfficientNet-B0-SP, and SqueezeNet-SP).

Figure 8 plots validation accuracy against the global unstructured sparsity r for each
structured-pruned backbone model. The vertical red line indicates the sparsity r* selected
by the bisection rule, r∗ = max{ r ∈ [rmin, rmax] | Accval(r) ≥ τ}, subject to constraints on
FLOPs and parameter count. Although Accval(r) is not strictly monotonic due to stochastic
variations, the pass/fail criterion Acc(r) > τ behaves as an effective quasi-monotone
predicate after batch normalization re-estimation and short fine-tuning. Each midpoint
candidate is evaluated with 1–3 epochs on 10–30% of the validation data, repeated twice,
and accepted if Acc(r) > τ + ϵ. The selected sparsity r* typically lies near the knee point,
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where further sparsity induces a steep drop in accuracy. Following pruning, channel
repacking converts the fine-grained sparsity into structural channel removals, improving
latency on dense kernels without altering r*. Revalidation is performed after repacking to
ensure accuracy remains within the target margin.

 
(a) MobileNetV3-UP 

 
(b) MobileNetV2-UP 

 
(c) EfficientNet-B0-UP 

 
(d) SqueezeNet-UP 

Figure 8. Accuracy vs. unstructured pruning ratio (global L1): MobileNetV3-UP, MobileNetV2-UP,
EfficientNet-B0-UP, and SqueezeNet-UP.

4.3. Cross-Backbone Summary

We evaluate four backbones—MobileNetV3, MobileNetV2, EfficientNet-B0, and
SqueezeNet—under four regimes: baseline, unstructured pruning + INT8 quantization
(UP+Q), structured pruning (SP), and the proposed hybrid approach integrating SP, UP,
and quantization (SP+UP+Q). Baselines models deliver high accuracy but come with large
FLOPs and parameter footprints.

Table 4 compares the accuracy and computational complexity of different models,
while Figure 9 presents confusion matrices for the hybrid (SP+UP+Q) models. Compared to
unpruned baselines, the unstructured pruning with quantization (UP+Q) primarily reduces
parameter memory with negligible changes in FLOPs. In contrast, structured pruning (SP)
achieves significant reductions in computation with either neutral or slightly improved
accuracy. The hybrid pruning approach attains the best accuracy–efficiency trade-off across
diverse backbone architectures.
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Table 4. Comparisons of Baselines, Structured Pruning (SP), Unstructured Pruning (UP+Q), and
Hybrid Pruning (SP+UP+Q).

Baseline Acc. Recall F1 Sparsity FLOPs
(M) Size (MB)

MobileNetV3 0.94 0.939 0.939 0 71 5.94

-UP- 0.944 0.944 0.943 0.7 71 4.42

-SP 0.942 0.942 0.941 0 44 1.05

-Hybrid 0.948 0.948 0.956 0.4 44 1.02

MobileNetV2 0.944 0.944 0.944 0 373 8.74

-UP- 0.928 0.927 0.929 0.3 373 6.50

-SP- 0.95 0.95 0.950 0 160 0.58

-Hybrid 0.936 0.936 0.936 0.1 160 0.48

EfficientNet-B0 0.932 0.932 0.932 0 27 15.59

-UP- 0.946 0.946 0.946 0.8 27 15.59

-SP- 0.936 0.935 0.936 0 21 1.35

-Hybrid 0.934 0.934 0.934 0.4 21 1.20

SqueezeNet 0.928 0.927 0.927 0 287 2.78

-UP- 0.93 0.93 0.93 0.8 287 2.48

-SP- 0.922 0.922 0.922 0 170 0.47

-Hybrid 0.922 0.921 0.921 0.5 170 0.47

 
(a) MobileNetV3 (b) MobileNetV2 

 
(c) EfficientNet-B0 (d) SqueezeNet 

Figure 9. Confusion matrices of hybrid models (MobileNetV3-hybrid, MobileNetV2-hybrid,
EfficientNet-B0-hybrid, and SqueezeNet-hybrid).



Signals 2025, 6, 66 17 of 22

For instance, in the most pronounced case of MobileNetV2, the parameter count
decreases from 4.37 million to 0.58 million (approximately 15% of the baseline), and FLOPs
reduce from 373.1 million to 160.1 million (42.9% of the baseline), while accuracy increases
from 94.4% to 95.0%, reflecting a +0.6-percentage point gain. Similar trends are observed
for MobileNetV3 (38% FLOPs reduction, 65% parameter reduction, +0.2 pp accuracy),
and EfficientNet-B0 (21% FLOPs reduction, 83% parameter reduction, +0.4 pp accuracy).
SqueezeNet exhibits decreases by 41% in FLOPs and 66% in parameters with a slight
accuracy loss of 0.6 percentage points.

Applying UP+Q approximately halves parameter memory, while keeping FLOPs
largely unchanged, with accuracy deviations within ±0.3 percentage points. The hy-
brid method yields the best accuracy–efficiency tradeoff across all backbones. Addition-
ally, the bisection-guided NAS controller reduces search evaluations from N to ⌈log2N⌉
(e.g., 13 → 4, 18 → 5), cutting search time by ~60–70% without compromising final ac-
curacy. Overall, these results substantiate the contribution: hybrid pruning delivers
compact, low-latency radar foot gesture models suitable for edge deployment while pre-
serving recognition performance, and bisection-guided NAS efficiently reduces repeated
training overhead.

Table 5 shows the CPU-hours before and after applying the proposed hybrid pruning to
each baseline, measured on an Intel Core i5-13600K. With bisection-guided NAS, the search
evaluation count drops, yielding up to ~70% lower search cost. When search and training
are combined, the total CPU-hours decrease by 7.6–40.3% (largest on MobileNetV2), in line
with the 21–57% FLOPs reductions delivered by structured pruning. The time savings are
therefore driven primarily by computation cuts rather than accuracy changes.

Table 5. CPU hours before/after applying the hybrid pruning (per baseline). The down arrow (↓)
indicates a reduction.

Model Train CPU-h
(Base)

Train CPU-h
(Hybrid)

Search
CPU-h

(Bisection)

Total CPU-h
(Hybrid)

Training
Cost Saving

(%)

MobileNetV3 0.00682 0.00422 0.00092 0.00514 24.7 ↓
MobileNetV2 0.03581 0.01537 0.00602 0.02139 40.3 ↓
EfficientNet-

B0 0.00261 0.00206 0.00035 0.00241 7.6 ↓

SqueezeNet 0.02764 0.01639 0.00371 0.02010 27.3 ↓

Table 6 presents the end-to-end inference latency measured on the target edge plat-
form. Under fixed hardware and batch size, latency scales approximately linearly with
FLOPs; accordingly, the hybrid models achieve latency reductions proportional to their
computational savings, with the largest improvement observed in MobileNetV2 (≈57%).
On an ARM Cortex-M4–class MCU executing INT8 kernels at typical clock rates, CNNs
with 227 × 227 input dimensions execute within several hundred milliseconds to a few
seconds, depending on backbone complexity. The weights-only memory footprints of
the hybrid models are approximately 1.05 MB (MobileNetV3), 0.58 MB (MobileNetV2),
1.35 MB (EfficientNet-B0), and 0.47 MB (SqueezeNet). Note that peak SRAM usage also
includes activation maps and temporary buffers. These results confirm that hybrid prun-
ing achieves meaningful latency reductions on resource-constrained hardware, satisfying
several sub-second inference on MCU-class devices.
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Table 6. End-to-End inference latency on the target edge platform. The down arrow (↓) indicates a
reduction.

Baseline–Hybrid
Model Pairs

Latency
Baseline (ms)

Latency
Hybrid (ms)

Latency
Saving (%)

MobileNetV3-V3-hybrid 592.5 366.7 38.1 ↓
MobileNetV2-V2-hybrid 3108.8 1334.2 57.1 ↓

EfficientNet-B0-B0-hybrid 226.5 179.2 20.9 ↓
SqueezeNet-SQ-hybrid 2399.2 1422.5 40.7 ↓

5. Discussion
5.1. Limitations

The proposed system employs a single 24 GHz continuous-wave (CW) Doppler radar
that produces 227 × 227 short-time Fourier transform (STFT) spectrograms. Because a
single CW channel captures only the radial velocity component, lateral or oblique foot
motions yield weak Doppler returns, making sensing coverage highly dependent on radar
placement and foot trajectory. Extending to multi-input multi-output (MIMO) or multi-
view radar configurations could alleviate self-occlusion and enrich angular and range
diversity, thereby improving spatial robustness.

From a data perspective, this study uses a single in-house dataset of 3500 spectrograms
representing four-foot gestures plus an Object (negative) class, all collected indoors at in-
door site. The use of random holdout splits may overestimate generalization compared with
more rigorous subject-disjoint or session-disjoint evaluation. Broader validation, encom-
passing multi-site data acquisition, cross-device replication, and subject-wise partitioning,
is needed for a more representative robustness assessment.

In the compression pipeline, unstructured pruning applies a global L1-norm threshold
followed by linear 8-bit quantization based on global min–max scaling. This approach
can suffer from layer-wise scale mismatch and outlier sensitivity. Adopting per-channel
quantization with calibration on representative data would enhance numerical stability
and reduce accuracy fluctuations. Structured pruning identifies a semi-optimal knee in
the block–accuracy trade-off curve; however, the precise knee position may vary with
dataset and backbone architecture. Reporting confidence intervals and performing multiple
experimental runs are therefore necessary to confirm statistical reliability.

Our experiments were restricted to backbone networks capable of end-to-end training
on CPU-class hardware, which constrained this study to lightweight CNN architectures.
Consequently, more computationally demanding models such as Temporal Convolutional
Networks (TCNs) and Vision Transformers (ViTs) were not included. This limitation
arises from the training environment rather than the proposed pruning method itself.
To address this, future work will involve (i) migrating the training process to GPU or
cluster environments with mixed precision support, (ii) integrating one-shot or supernet-
based search and training-free proxy methods to save NAS search costs, (iii) applying
knowledge distillation or low-rank adapters to stabilize compression of TCN and ViT
models, and (iv) incorporating advanced pruning techniques such as head/channel pruning
and token sparsification combined with channel repacking. These improvements will
enable controlled comparisons with contemporary architecture while maintaining the
stringent edge-deployment accuracy and latency requirements.

5.2. Robustness

Spectro-temporal radar signatures are influenced by footwear type and material, floor
surface, stance, and moving speed. Class-dependent variations in bandwidth and spectral



Signals 2025, 6, 66 19 of 22

asymmetry reveal sensitivity to these physical factors. To enhance robustness, future
models should be incorporated:

1. Physics-aware data augmentation—including time-stretching, Doppler scaling, and
frequency masking—to simulate diverse kinematic conditions.

2. Test-time batch-normalization re-estimation using small unlabeled calibration buffers
3. Systematic performance evaluation across deployment distances and horizontal and

vertical aspect angles (0.5–2 m).

Architecturally, the block–accuracy curves saturate at moderate network depths (about
7–10 blocks), indicating that high-resolution early stages dominate feature extraction and
computation. Hence, pruning strategies should preserve these early layers while compress-
ing later redundant blocks. Reporting confusion matrices and per-class F1-scores would
further clarify robustness to viewpoint changes and inter-class similarities, such as swing
versus slide.

5.3. Edge Implications

The hybrid compression pipeline (structured pruning followed by unstructured prun-
ing and quantization) yields substantial reductions in computational complexity while
preserving accuracy. For instance, MobileNetV2 and MobileNetV3 are compressed to
160.1 M and 44.0 M FLOPs with model sizes of 0.58 MB and 1.05 MB, respectively, achiev-
ing accuracies near 95% and 94%. Given latency and energy scale roughly with FLOPs and
memory traffic, these compressed models are well-suited for real-time edge devices, signifi-
cantly reducing DRAM bandwidth pressure—critical for always-on sensing scenarios. The
8-bit parameter quantization halves memory relative to FP16 and facilitates deployment on
neural processing units optimized for INT8 operations.

For practical deployment, we recommend (i) hardware-aware latency budgeting
by choosing minimal block counts above accuracy thresholds (the accuracy knee point);
(ii) implementing calibrated, per-channel INT8 quantization; and (iii) converting fine-
grained sparsity into structured representations to exploit dense kernel optimizations.
Notably, the framework is backbone-agnostic and applies equally to MobileNetV3/V2,
EfficientNet-B0, and SqueezeNet, serving as a general compression wrapper for future
radar or multimodal human–computer interaction systems.

5.4. Future Directions

Building on these insights, future research should explore multimodal sensing archi-
tectures integrating radar with complementary modalities such as vision or inertial sensors
to enhance robustness and contextual awareness. Expanding to richer gesture vocabularies
and diverse environmental conditions will further validate generalization. Developing
adaptive pruning and quantization schemes that respond dynamically to runtime con-
straints and device heterogeneity also presents promising avenues. Finally, deploying and
benchmarking these models on real-world edge hardware, evaluating latency, energy, and
user experience holistically, will concretize their practical utility.

6. Conclusions
We presented a bisection-guided neural architecture search (NAS) hybrid pruning

framework for radar-based foot gesture recognition, specifically designed to meet the
strict computing power and memory constraints of CPU-class edge deployment. Our
approach integrates three complementary techniques—structured pruning, unstructured
pruning with quantization, and channel repacking—to minimize model complexity while
preserving high recognition accuracy.
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In the initial stage, bisection-guided NAS structured pruning determines the minimal
number of blocks retained (or equivalently, the maximal safe sparsity) that satisfies a target
accuracy under given FLOPs and memory constraints. By leveraging a weight-sharing
supernet to define the search space and a binary search strategy to guide exploration,
the framework reduces evaluation costs from N to ⌈log2N⌉, cutting search time by ap-
proximately 60–70% compared to traditional iterative pruning, without sacrificing model
performance. This results in pruned backbones retaining only the most critical blocks for
recognition accuracy.

Subsequently, unstructured pruning applies to a global L1-norm threshold inducing
fine-grained sparsity across convolutional and linear layers, followed by INT8 quantiza-
tion and channel repacking that convert sparsity into structured channel removals. This
hybrid compression pipeline effectively eliminates redundant parameters and channels,
reducing memory usage and enabling faster inference on dense kernels. Consequently,
models exhibit both theoretic reductions in FLOPs and practical decreases in latency on
real hardware.

Extensive experiments on four lightweight CNN backbones—MobileNetV3, Mo-
bileNetV2, EfficientNet-B0, and SqueezeNet—under various pruning regimes demonstrate
that the hybrid method consistently achieves the best accuracy–efficiency trade-off. On aver-
age, FLOPs decrease by 21–57% and parameters by 65–87%, with accuracy variation within
±0.6 percentage points (e.g., MobileNetV2 +0.6 pp; SqueezeNet −0.6 pp). MobileNetV2
shows the most notable improvements, compressing to 15% of its original parameters and
42.9% of original FLOPs while improving accuracy from 94.4% to 95.0%. These results
confirm the viability of aggressive hybrid pruning for creating compact yet accurate models
for continuous-wave radar foot gesture recognition.

The primary contribution of this work is the development of a training-cost-aware
compression pipeline. Our low-cost decision protocol uses short fine-tuning (1–3 epochs)
with partial validation (10–30% of data, repeated twice) to eliminate the need for costly
full retraining cycles typical of NAS methods. Together, these enable compact, highly
efficient CNN models for contactless gesture recognition without significant loss of accuracy,
enabling real-time operation on resource-constrained hardware. We contribute a unified
hybrid-pruning theory that (i) couples training with resource budgets, (ii) guarantees
label invariance via a logit-perturbation bound that combines unstructured pruning, INT8
quantization, and channel repacking under a half-margin condition, (iii) provide a decision
reliability for bisection with a closed-form tolerance and the corresponding recognition
lower bound, and (iv) link compression to generalization through an Occam/PAC-Bayes
code-length bound that tightens as nonzero and effective dimension shrink. These results
explain why the proposed method preserves accuracy while reducing FLOPs, parameters,
and latency, and how to adjust pruning and quantization settings to achieve efficient,
deployable edge models.

Beyond empirical validation, this framework offers a generalizable, backbone-agnostic,
and hardware-aware methodology for efficient model compression applicable across
radar and multimodal sensing systems. Future research will focus on scaling datasets
for subject- and session-disjoint evaluation, integrating adaptive quantization for di-
verse devices, and deploying models on operational edge hardware to assess latency,
energy efficiency, and user responsiveness. Further, extending this approach to multi-
modal sensor fusion promises enhanced robustness and new avenues for human–computer
interaction applications.

In summary, the proposed bisection-guided NAS hybrid pruning framework enables
real-time, privacy-preserving radar foot gesture recognition with compact models opti-
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mized for accuracy and computational efficiency, marking a significant advance toward
practical, always-on embedded human–computer interfaces.
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