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Abstract

Al-driven agricultural automation increasingly demands efficient data generation methods
for training deep learning models in autonomous robotic systems. Traditional bounding
box annotation methods for agricultural objects present significant challenges including
subjective boundary determination, inconsistent labeling across annotators, and physical
strain from extensive mouse movements required for elongated objects. This study proposes
a novel base-width standardized annotation method that utilizes the base width of a vine
trunk and a support post as a reference parameter for automated bounding box generation.
The method requires annotators to specify only the left and right endpoints of object
bases, from which the system automatically generates standardized bounding boxes with
predefined aspect ratios. Performance assessment utilized Precision, Recall, F1-score,
and Average Precision metrics across vine trunks and support posts. The study reveals
that vertically elongated rectangular bounding boxes outperform square configurations for
agricultural object detection. The proposed method is expected to reduce time consumption
from subjective boundary determination and minimize physical strain during bounding
box annotation for Al-based autonomous navigation models in agricultural environments.
This will ultimately enhance dataset consistency and improve the efficiency of artificial
intelligence learning.

Keywords: agricultural robotics; deep learning; object detection; bounding box annotation;
vine trunk detection; autonomous navigation; vineyard automation

1. Introduction

Al-driven agricultural automation has become increasingly important for addressing
global food security issues and agricultural labor shortages. Developing autonomous
agricultural robots requires advanced technologies similar to those applied in autonomous
vehicle systems. However, introducing these technologies to agricultural environments
faces significant challenges due to the difficulty of collecting vast amounts of big data across
diverse agricultural conditions and the enormous investment required for technology
development [1,2].

Agricultural autonomous navigation has evolved through several technological ap-
proaches to address the unique challenges of unstructured agricultural environments.
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Computer vision techniques such as edge detection, Hough transform, and color-based
segmentation have been utilized for crop row detection and traversable space identifica-
tion [3,4]. While these traditional vision methods were effective in controlled environments,
they were vulnerable to lighting changes, shadows, and irregular crop patterns. To address
the limitations of rule-based vision, machine learning techniques including SVM, decision
trees, and clustering algorithms were introduced for agricultural feature classification and
free space detection [5,6]. Although robustness improved in vineyards and orchards, these
approaches required extensive feature engineering and manual feature selection, making
expansion to diverse agricultural environments challenging.

Recently, deep learning techniques using CNN and U-Net semantic segmentation
models have achieved success in crop row detection and path planning, while deep rein-
forcement learning has enabled position-agnostic traversal in vineyards, and fully convolu-
tional networks have significantly improved free space detection accuracy [7-10]. Research
on autonomous navigation in vineyard and orchard environments has also progressed
in the direction of utilizing YOLO algorithms. A method has been proposed to improve
automatic driving accuracy by combining machine vision and YOLOv4 model to detect the
relative position between orchard robots and orchard rows in the special environmental
conditions of orchards [11]. Meanwhile, an “Improved Hybrid Model” was proposed by
combining YOLOv?7 and Robot Operating System (ROS) to enhance autonomous driv-
ing and obstacle avoidance accuracy. In particular, the combination of YOLOv7 and RRT
(Rapidly-exploring Random Tree) algorithms improved navigation performance in complex
orchard environments [12]. These studies have demonstrated that YOLO-series algorithms
can be effectively utilized for the development of autonomous navigation systems in agri-
cultural environments. However, these studies still have not solved the challenges related
to efficient annotation data generation methods. Large-scale annotated datasets are es-
sential, resulting in significant time and cost burdens for data collection and annotation.
Despite technological advances, particularly the annotation stage for deep learning training
datasets remains a bottleneck, and annotation work in agricultural environments presents
unique challenges different from general computer vision applications.

Computer vision is a core technology enabling autonomous operation of agricultural
robots. Particularly, the ability to identify free space for safe traversal is essential. Recent
studies in computer vision have shown that consistent bounding box aspect ratios improve
the stability of convolutional neural network training and enhance the feature extraction
process [13,14]. Standardization of annotation methods has been shown to reduce inter-
annotator variability and improve overall dataset quality [15]. Additionally, ergonomic
research has demonstrated that increased cognitive load adversely affects work efficiency
and consistency, suggesting that simplification of decision-making processes in repetitive
tasks can contribute to improved work performance [16]. The performance of object
detection algorithms is heavily dependent on the quality and consistency of training data,
particularly the accuracy of annotation methods used in dataset generation [17,18].

In vineyards, autonomous mobile robots must move through the traversable space
between vine rows while avoiding vine trunks and support posts. As illustrated in
Figure 1, semi-structured vineyard environments present typical scenarios where robots
must navigate between regularly spaced vine rows, whether in greenhouse vineyard fa-
cilities or open-field installations. Trunk positions serve as important reference points for
determining the free space that robots can traverse through. The vineyard layout shown in
Figure 1 demonstrates the characteristic corridor-like pathways formed between vine rows,
where accurate detection of vine trunk and support posts is crucial for safe autonomous
traversal. Conventional annotation methods typically involve manually enclosing the
entire trunk from base to upper branches with bounding boxes, as exemplified in the
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annotation samples presented in Figure 1 [19]. These traditional bounding box annotations
encompass the complete vertical extent of vine trunks, requiring annotators to determine
both the upper and lower boundaries of elongated agricultural objects in both controlled
greenhouse environments and variable outdoor field conditions.

Figure 1. Representative training dataset images and bounding box annotation examples from
semi-structured vineyard environments for autonomous agricultural robot development, greenhouse
vineyard cultivation facility.

Agricultural objects present more ambiguous boundaries than road traffic objects,
leading to several problems [20]. First, annotators must continuously determine the bottom
width, top width, and height of bounding boxes, with inefficiency increasing as more data
is required, and different standards among annotators reduce dataset consistency, leading
to degraded deep learning performance [21,22]. Second, continuous annotation work
leads to accumulated fatigue and increased processing time, while vertically elongated
trunks have ambiguous top and bottom boundary determination, and large vertical mouse
movements cause strain on wrists and shoulders [23-25]. Third, while trunk base position
is more important than overall shape for robot traversal, conventional annotation includes
unnecessary information beyond requirements, causing noise [26].

To address these limitations, this study proposes a base-width-based annotation
method that standardizes bounding box aspect ratios based on trunk base width. Rather
than allowing annotators to arbitrarily determine box sizes, once the base width is deter-
mined, fixed width:height ratios are automatically applied. This is based on the insight
that trunk base position is more important for robot traversal. The primary objective of
this study is to systematically evaluate eight aspect ratio combinations to find the optimal
annotation configuration, combining width multipliers (a = 1.0, 1.5, 2.0, 2.5) and height
multipliers (b =1 X a, 2 x a). The configurations T1010, T1515, T2020, T2525, T1020, T1530,
T2040, T2550 were evaluated to find the optimal balance between contextual information
content and computational efficiency. Each configuration was evaluated using Precision,
Recall, F1-score, and Average Precision (AP).

This study presents the following differentiated contributions in the field of dataset
construction for autonomous agricultural robots. First, unlike existing annotation methods
that encompass the entire trunk area, this study proposes for the first time a standardized
bounding box generation method based solely on the base width of vine trunks and support
posts, designed to minimize subjective judgment by annotators and reduce mouse pointer
movement distance required for generating bounding box boundaries. Second, through
systematic evaluation of eight aspect ratio combinations (T1010~T2550) for agricultural
environment object detection, this study confirms that vertically elongated rectangular
bounding boxes demonstrate relatively superior performance compared to square configu-
rations for elongated agricultural objects. Third, computer program experiments validated
that the proposed base-width-based annotation method shows applicability for gener-
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ating traversal paths required for autonomous navigation of actual agricultural robots.
These research achievements can contribute substantially to the advancement of Al-driven
automation technology in the agricultural robotics field.

2. Materials and Methods
2.1. Greenhouse Vineyard Environment

The experiment was conducted in a semi-structured greenhouse vineyard environment
located in Sangju-si, Gyeongsangbuk-do, Republic of Korea, in September 2020, to enable
controlled data collection. We used an image data collection cart system equipped with
an Intel® RealSense™ Depth Camera D435i mounted on a commercial 1/5 scale radio-
controlled cart to collect driving path images of the greenhouse vineyard. For this study,
we stored RGB images while driving the radio-controlled cart. The images used for this
experiment were acquired through the following process. The image collection cart system
was controlled at 3.6 Km/h, and camera images were collected at 30 fps. Among the
collected consecutive images, every 6th image was selected for the experiment, resulting
in an effective image collection rate of 5 fps, and the experiment was designed so that
the distance difference between images would be approximately 20 cm. Greenhouse
vineyards provide advantages for agricultural robot research including stable power supply,
controlled environmental conditions, and ease of equipment installation for repetitive
development testing.

As shown in Figures 1 and 2, productivity-oriented vineyards typically consist of
grapevines planted in regular rows at regular intervals and support posts installed at
consistent spacing. These support structures are connected by steel wires to which the
grapevines are attached, forming what is known as a “tree wall” or “fruit wall”. The space
between vine rows creates corridors that serve as pathways for both human workers and
autonomous operation vehicles. This structured arrangement defines a semi-structured
agricultural environment suitable for robotic applications [19].

Figure 2. Semi-structured vineyards designed for productivity feature grapevines and support posts
positioned at consistent intervals, creating a distinctive “tree wall” or “fruit wall” formation.

The experimental vineyard, as shown in Figures 1 and 2, features grapevines planted
at regular intervals with support posts arranged to maintain consistent row spacing. The
bases of vine trunks and support posts serve as important reference points for determining
traversable free space, as they represent the primary obstacles that autonomous robots
must avoid while moving through vineyard environments.

2.2. Annotation Methodology

Traditional bounding box annotation requires annotators to manually determine the
top-left and bottom-right corners of each object. Agricultural object recognition targets for
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autonomous operation differ from road autonomous driving recognition targets in that
agricultural objects have ambiguous boundary characteristics unlike the clear boundary
features of road objects. Therefore, Agricultural environments present unique challenges for
Al training data generation compared to conventional computer vision applications. Plant-
based objects in agricultural settings exhibit ambiguous boundaries and irregular forms,
making bounding box annotation significantly more time-intensive than annotation work
for artificial objects with clear geometric boundaries. This increased complexity leads to
greater inter-annotator variability and reduced dataset consistency, which directly impacts
the quality of training data for agricultural Al systems. Annotation work for vertically
elongated objects such as vine trunks and support posts become particularly difficult due
to two main problems. First, accurately determining the boundaries of the upper and
lower portions of trunks is subjective and ambiguous. Second, creating vertically elongated
bounding boxes requires large vertical mouse movements, causing physical strain on the
annotator’s wrists and shoulders.

To address these limitations, we propose a novel two-point annotation method focus-
ing on the lower portion of vine trunks and support posts. This method was developed
based on the insight that the position of the trunk and post base is more important than the
overall object shape for autonomous operation movement.

As shown in Figure 3, the existing annotation method (a) requires annotators to set
diagonal boundaries from the top-left to bottom-right that encompass the entire trunk,
necessitating large mouse movements and subjective boundary decisions. In contrast, the
proposed method (b) requires only specifying a diagonal line from the left endpoint of
the vine trunk base or post base as the starting point to an arbitrary point on the y-axis
while maintaining the x-axis position of the right endpoint in the x-y coordinate system,
significantly improving annotation work efficiency and consistency through reduced mouse
movement distance and clear boundary judgment.
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Figure 3. Annotation method comparison: (a) traditional full-trunk bounding box annotation with
extensive mouse movements, and (b) proposed base-width-based method focusing on vine trunk
base endpoints for improved efficiency and consistency.

The Base-Width-Based Annotation proposed in our research consists of two phases:
Pre-annotation Phase and Standardized Bounding Box Generation Phase.

The Pre-annotation Phase represents the initial stage of the proposed base-width-based
annotation methodology for agricultural object detection. Figure 4 shows the workflow
of the Pre-annotation Phase. The steps of the Detailed Pre-annotation Phase Process are
as follows.
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Figure 4. The workflow of the Pre-annotation Phase.

Step 1. Image Dataset Preparation: In this initial step, the image dataset for Al training
is prepared and organized. This involves collecting and arranging vineyard environment
images containing vine trunks and support posts into appropriate folders or datasets.
This preparatory step requires all images to be carefully reviewed and prepared for the
annotation process.

Step 2. Initializing Annotation Tool: This step involves selecting and launching an
appropriate annotation program or tool that enables bounding box creation. The annotation
tool is not restricted to any specific software; any tool supporting bounding box annotation
can be utilized. During this stage, the image dataset prepared in the first step is loaded into
the annotation environment.

Step 3. Verification of New Next Image: The system determines whether there are
images requiring annotation in the loaded dataset. If unprocessed images exist, the work-
flow proceeds to the fourth step; otherwise, it moves directly to the ninth step for data
extraction.

Step 4. Loading the New Next Image: This step involves loading a new image from
the dataset into the annotation tool’s workspace according to a predetermined sequence.
The image is displayed in the annotation workspace for analysis and processing.

Step 5. Verification of New Next Object for Labeling: The annotator examines the
loaded image to determine if there are vine trunks or support posts that have not yet been
annotated with bounding boxes. This judgment process creates a critical bifurcation in the
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workflow. If all objects have been annotated, the process proceeds to the sixth step for data
saving. If objects requiring bounding box creation are identified, the process advances to
the seventh step.

Step 6. Saving Annotation Data: When all objects in the current image have been
annotated, or when no objects requiring annotation are present, the system saves the
annotation data for the current image. After saving, the workflow returns to the third step
to check for additional images requiring annotation.

Step 7. Selection of Object Class: For each identified object requiring annotation, the
annotator selects and assigns the appropriate class label—either vine trunk (Class 1) or
support post (Class 0). This classification is essential for subsequent specialized detection
model training and must be accurately selected.

Step 8. Bounding Box Finalization: This step applies the key methodology in our
approach. Unlike conventional annotation methods that require comprehensive bounding
of the entire object, our approach focuses exclusively on the base endpoints of vine trunks
and support posts. The annotator selects the left endpoint of the object base as the starting
point and drags to an appropriate position on the y-axis while maintaining the x-axis
value of the right endpoint, ensuring that the left and right positions of the object base
are accurately marked. During this process, it is only necessary for both left and right
endpoints of the object base to be included within the bottom boundary of the preliminary
bounding box, without needing to encompass the entire trunk structure. The height of the
bounding box created at this time is not important, and only a minimal height sufficient
for visual identification of the bounding box is required during the verification stage. This
bounding box finalization approach minimizes subjective judgment about object boundaries
inherent in traditional annotation methods. Once the bounding box finalization for one
object is complete, the workflow returns to the fifth step to check for additional objects
requiring annotation.

Step 9. Extraction of Completed Annotation Dataset: When the bounding box final-
ization process for all prepared images is completed, the workflow concludes with the
extraction of all annotated bounding box data. This extracted Pre-annotation dataset serves
as input for the Standardized Bounding Box Generation Phase, where the system will
algorithmically transform these base endpoint parameters into standardized bounding
boxes with predetermined aspect ratios.

The Pre-annotation Phase concludes after all images have been processed and the
complete annotation dataset has been extracted. This systematic approach to annotation
represents a fundamental departure from conventional methods, particularly eliminating
ambiguous boundary determination and removing the need to consider the vertical length
and shape variations of the upper portions of agricultural objects requiring annotation.

After completing the extraction of the pre-annotation dataset in the Pre-annotation
Phase, the second phase of Standardized Bounding Box Generation is performed. In this
phase, the annotator’s only task is to determine the aspect ratio of the bounding boxes to
be generated. By applying the pseudocode algorithm in Algorithm 1, it receives the data
prepared in the Pre-annotation Phase as input, processes it, and automatically generates
the final annotation dataset. The steps of the standardized bounding box generation phase
process are as follows.

Step 1. Load Pre-annotation Data: This initial step involves loading the dataset
extracted from the Pre-annotation Phase, which contains the base endpoint coordinates
for all annotated objects across all images. These coordinates serve as the foundation for
generating standardized bounding boxes.

Step 2. Calculate Base Width: For each annotated object, the system calculates the
reference width (1W) by measuring the distance between the left and right endpoints of the



Agronomy 2025, 15, 2107

8 of 19

object base obtained during the Pre-annotation Phase. This reference width serves as the
fundamental parameter for determining the dimensions of the standardized bounding box.

Step 3. Apply Predefined Aspect Ratios: The system applies predefined aspect ratios
(@aW x bW) to the reference width, where ‘2’ represents the width multiplier and ‘b’ repre-
sents the height multiplier. This step transforms the simple base width information into
properly dimensioned bounding boxes with standardized proportions.

Step 4. Position Bounding Boxes: The system positions each standardized bounding
box so that it is centered on the object base. This ensures consistent placement relative to the
actual physical position of vine trunks and support posts, which is critical for autonomous
navigation applications.

Step 5. Convert to Standard Annotation Format: The generated standardized bounding
boxes are converted to a standard annotation format compatible with object detection model
training frameworks. This typically involves normalizing the coordinates and dimensions
according to the requirements of the selected training framework.

Step 6. Verify Generated Bounding Boxes: The system performs verification checks
to ensure all standardized bounding boxes have been properly generated and positioned.
This may include visual verification through sample renderings or automated validation of
bounding box parameters.

Step 7. Generate Final Annotation Dataset: The system compiles all standardized
bounding box data into a comprehensive annotation dataset that can be directly used for
training object detection models. This dataset includes class information, standardized
bounding box coordinates, and any additional metadata required for training.

The Standardized Bounding Box Generation Phase concludes with the generation of
the standardized annotation dataset according to the process described above.

Algorithm 1. StandardizedBoundingBoxGeneration

Require: pre_annotation_dataset // Dataset extracted from Pre-annotation Phase
Require: aspect_ratios // Predefined list of aspect ratios (aW x bW)

1:function StandardizedBoundingBoxGen (pre_annotation_dataset, aspect_ratios)
2: object_base_endpoints <— LoadPreAnnotationData(pre_annotation_dataset)

: objects_with_width < CalculateBaseWidth(object_base_endpoints)

: standardized_objects <— ApplyAspectRatios(objects_with_width, aspect_ratios)

: positioned_boxes < PositionBoundingBoxes(standardized_objects)

: standard_format_annotations <— ConvertToStandardFormat(positioned_boxes)

: verified_annotations < VerifyBoundingBoxes(standard_format_annotations)

: final_annotation_dataset < GenerateFinalDataset(verified_annotations)

O 00 NI O O &~ W

: return final_annotation_dataset
10:end function

As shown in Figure 5, automatic bounding box generation is based on the following
definitions: 1W (width) represents the distance between the left and right points of the trunk
base or support post base; the trunk center point is the center point of the 1W horizontal line
division; the bottom horizontal line is the horizontal line extending from the 1W division;
and the bounding box baseline is the horizontal line located 0.3 x W below the bottom
horizontal line.
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Figure 5. Base-width standardization parameters: (a) 1W (vine trunk base width), (b) Core Point
(center of 1W), and baseline positioning (0.3W below Core Point) for symmetric bounding box
generation. ‘1W’ represents the reference width, defined as the distance between the left and right
endpoints of the vine trunk or support post base.

All bounding boxes are defined by width (aW) and height (bW), where the area of the
bounding box equals aW x bW. In this experiment, a = 1.0, 1.5,2.0,25and b=1 x 4,2 X a.
This creates eight different combinations of bounding boxes according to the rules shown
in Figure 6, summarized in Table 1.

Establishment of
Core Point, Base
Line, and w
Parameter from
annotated End
Points.

Lot end W righi-end

Figure 6. Definition of Bounding boxes of all rectangular shapes can be expressed in width aW and
height. (a) Automatic parameter calculation process from manual endpoint annotation, (b) generation
principles for eight standardized bounding box combinations. ‘a’ represents the width multiplier that
determines the horizontal dimension of the bounding box as a multiple of the base width (W) and
‘b’ represents the height multiplier that determines the vertical dimension of the bounding box as a
multiple of the base width (W).



Agronomy 2025, 15,2107 10 of 19

Table 1. Bounding box aspect ratio configurations with width and height specifications.

Type ! Width Height
T1010 1.0 x W 1.0 x W
T1020 1.0 x W 20 x W
T1515 1.5 x W 1.5 x W
T1530 1.5 x W 3.0 x W
12020 20 x W 20 x W
T2040 20 x W 40 x W
T2525 25 x W 25 x W
T2550 25 xW 50 x W

! Type: Bounding box configuration identifier, where the alphanumeric code indicates width and height multipliers
relative to the vine trunk base width.

2.3. Deep Learning Model Configuration

This study employed YOLOv3 (You Only Look Once version 3) with Darknet-53 as
the backbone network. The model configuration was optimized for vineyard environment
detection with the following specifications: input resolution of 416 x 416 pixels, batch
size of 64 (testing) and 16 (subdivision), learning rate of 1 x 10~3 with a burn-in period of
1000 iterations, maximum batches of 12,000, momentum of 0.9, and decay of 5 x 104 [27].

Transfer learning was implemented using pre-trained darknet53.conv.74 model
weights. The model was configured for 2-class detection as shown in Figure 3b: Class 0 for
support posts/stakes and Class 1 for vine trunks. Data augmentation techniques included
saturation of 1.5, exposure of 1.5, hue of 0.1, and angle of 0 (rotation).

2.4. Dataset Preparation

A total of 962 images were collected from the greenhouse vineyard environment. The
dataset was divided as follows: training set with 770 images (80%), validation set with
86 images (9%) and test set with 106 images (11%).

Separate annotation datasets were generated for each of the eight bounding box
configurations (T1010 through T2550) using the proposed base-width-based annotation
method. Each dataset contained the same object locations but with different bounding
box dimensions according to their respective aspect ratios. The annotation data was
converted to YOLO format, with each bounding box defined by center coordinates (x, y)
and dimensions (width, height) normalized by image dimensions.

2.5. Evaluation Metrics

Model performance was evaluated using standard object detection metrics: Precision
calculated as TP/(TP + FP), Recall calculated as TP/ (TP + FN), Fl-score calculated as
2 x (Precision x Recall)/(Precision + Recall), Average Precision (AP) as the area under the
precision-recall curve, and mean Average Precision (mAP) as the average of AP across all
classes. Here, TP, FP, and EN represent true positives, false positives, and false negatives,
respectively, calculated at IoU threshold 0.5 [28].

2.6. Experimental Procedure

Training was conducted using the Darknet framework with the following procedure.
Data preprocessing involved resizing images to 416 x 416 pixels and normalization. Model
training was performed separately for each of the eight annotation configurations. Valida-
tion involved evaluating model performance on the held-out validation set. Comparative
analysis compared results across all eight configurations to identify the optimal aspect ratio.
The training process was performed on a system equipped with GPU acceleration to ensure
efficient model convergence within the specified 12,000 iterations.
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3. Results
3.1. Performance Comparison Based on Bounding Box Configuration

Performance evaluation of eight different bounding box configurations (T1010 through
T2550) showed significant differences in detection accuracy for both vine trunk and sup-
port post classes. The results demonstrate that the aspect ratio of annotation boxes
significantly affects model performance, with specific configurations showing superior
detection capabilities.

The performance metrics for support post detection across all eight configurations are
presented in Figure 7a and summarized in Table 2. Results show a clear trend that larger
bounding box configurations generally achieved better performance than smaller ones.
Configuration T2020 (2.0W x 2.0W) achieved the highest performance for support post
detection with accuracy 0.69, precision 0.60, recall 0.62, F1-score 0.61, and AP 0.47. This
was closely followed by T2550 (2.5W x 5.0W), which showed similar accuracy (0.69) but
slightly lower precision (0.59) and recall (0.60).

Precision
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Figure 7. Interpolated Average Precision (AP) performance comparison across eight bounding box
configurations for two object classes. (a) Interpolated Average Precision of Class 0 (support posts),
(b) Interpolated Average Precision of Class 1 (vine trunks). In the notation Txxxx, “T” represents
Type, the first two digits indicate the width multiplier (a), and the last two digits indicate the height
multiplier (b). For example, T1010 represents a 1.0 x W width by 1.0 x W height configuration, while
T2550 represents a 2.5 x W width by 5.0 x W height configuration.

The smallest configuration, T1010 (1.0W x 1.0W), showed the lowest performance
with accuracy 0.53, precision 0.42, recall 0.40, F1-score 0.41, and AP 0.20. This indicates that
excessively small bounding boxes may fail to capture sufficient contextual information for
effective support post detection.

For vine trunk detection, as shown in Figure 7b and Table 2, the performance pattern
differed from support post detection. Configuration T2525 (2.5W x 2.5W) achieved the
best performance with precision 0.70, recall 0.61, accuracy 0.56, F1-score 0.58, and AP 0.42.

Comparing support post detection performance with vine trunk detection perfor-
mance, the optimal bounding box ratio type for detecting vine trunks differed from that for
support posts. Unlike the best configuration T2020 for support post detection, vine trunk
detection performance evaluation showed that T2525 configuration achieved the best AP
performance of 0.42, followed by T2040 configuration with good performance at AP 0.40.
The smallest bounding box corresponding to T1010 bounding box ratio type showed the
lowest performance in vine trunk detection with precision 0.62, recall 0.50, accuracy 0.44,
Fl-score 0.47, and AP 0.26.
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Table 2. Detailed performance metrics for eight bounding box configurations showing Accuracy,
Precision, Recall, F1-score, and Average Precision (AP) values for Class 0 (support posts) and Class 1
(vine trunks) corresponding to Figure 7 results.

Class Type ! Accuracy Precision Recall F1 Score AP
T1010 0.53 0.42 0.40 0.41 0.20

T1020 0.62 0.53 0.49 0.51 0.32

T1515 0.61 0.52 0.51 0.52 0.33

Posts T1530 0.67 0.59 0.57 0.58 0.39
#0 T2020 0.69 0.60 0.62 0.61 0.47
T2040 0.67 0.55 0.58 0.57 0.43

T2525 0.65 0.56 0.57 0.57 0.40

T2550 0.69 0.59 0.60 0.60 0.43

T1010 0.62 0.50 0.44 0.47 0.26

T1020 0.64 0.53 0.51 0.52 0.30

_ T1515 0.66 0.56 0.54 0.55 0.35
Vine T1530 0.67 0.57 0.54 0.55 0.36
trunks T2020 0.69 0.58 0.57 0.58 0.36
#1 T2040 0.71 0.59 0.58 0.58 0.40
T2525 0.70 0.61 0.56 0.58 0.42

T2550 0.70 0.58 0.57 0.57 0.36

! Type: Bounding box configuration identifier, where the alphanumeric code indicates width and height multipliers
relative to the vine trunk base width.

The mean average precision (mAP) results combining both classes are plotted in
Figure 8 and presented in Table 3. The mAP analysis provides a comprehensive view of
overall model performance across various bounding box configurations. Configuration
T2040 (2.0W x 4.0W) achieved the highest mAP of 41.36% with individual AP values
of 39.81% for vine trunks and 42.91% for support posts. This was followed by T2525
(2.5W x 2.5W) with mAP 41.19% and T2020 (2.0W x 2.0W) with mAP 41.08%.

65% - 4—AP_VineTrunk
—o— AP_Post
55% T —=—mAP

45%

35% T

25% -+

15% + + + + + + + +
T1010 T1020 T1515 T1530 T2020 T2040 T2525 T2550

Figure 8. Mean Average Precision (mAP) comparison across eight bounding box configurations,
consolidating Class 0 (support posts) and Class 1 (vine trunks) results. AP_VineTrunk: Aver-
age Precision for vine trunk detection; AP_Post: Average Precision for support post detection;
mAP: mean Average Precision, representing the average of AP values across both classes.
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Table 3. Mean Average Precision (mAP) and individual class Average Precision (AP) values for eight
bounding box configurations corresponding.

Type ! AP_VineTrunk AP_Post mAP

T1010 26.01% 20.21% 23.11%
T1020 29.51% 31.57% 30.54%
T1515 34.61% 32.57% 33.59%
T1530 35.52% 39.03% 37.28%
T2020 35.57% 46.59% 41.08%
T2040 39.81% 42.91% 41.36%
T2525 42.08% 40.29% 41.19%
T2550 35.72% 43.36% 39.54%

1 Type: Bounding box configuration identifier, where the alphanumeric code indicates width and height multipliers
relative to the vine trunk base width.

3.2. Optimal Configuration Analysis

Analysis of results across all eight configurations reveals several important patterns.
Configuration size impact shows that small configurations (T10xx and T15xx) consistently
underperformed, suggesting that excessively small bounding boxes fail to capture sufficient
contextual information for effective detection. Aspect ratio importance demonstrates that
rectangular bounding boxes with twice the height of the width (T1530, T2040) generally
showed better performance than square configurations, particularly for elongated objects
such as vine trunks. Class-specific optimization reveals that different classes showed
preferences for different optimal configurations: support posts achieved best performance
at T2020 (2.0W x 2.0W), vine trunks at T2525 (2.5W x 2.5W), and overall (mAP) at T2040
(2.0W x 4.0W).

The consistent underperformance of smaller configurations indicates that insufficient
contextual information is captured when bounding boxes are too small. This finding aligns
with computer vision literature indicating that adequate context around target objects
is crucial for effective feature learning in convolutional neural networks. The superior
performance of larger configurations suggests that including more contextual information
around vine trunk bases improves detection accuracy. However, performance plateauing
and slight decrease in the largest configuration (T2550) suggests there is an optimal size
beyond which additional context may introduce more noise than useful information.

The analysis shows that vertically elongated rectangular bounding boxes generally
outperform square configurations. This finding is particularly relevant for elongated
objects such as vine trunks and support posts, where natural object geometry favors
vertical rectangles. Configuration T2040 (2.0W x 4.0W) achieved the highest mAP of
41.36%, demonstrating that vertically elongated bounding boxes effectively capture es-
sential features of both vine trunks and support posts. This aspect ratio appears to pro-
vide optimal balance between capturing sufficient trunk information and maintaining
computational efficiency.

3.3. Practical Implementation Results

To validate the practical feasibility of models trained with the proposed Base-Width-
Based Annotation method for real agricultural robot applications, detection experiments
were conducted using collected images as input data to detect vine trunk bases and support
posts. The experimental results applying the T2040 trained model are presented in Figure 9.
The specifications of the computer used for detection experiments are as follows: Intel(R)
Core(TM) i9-12900HX CPU @2.30 GHz, RAM 32 GB, Windows 11 Pro, 64-bit operating
system, NVIDIA GeForce RTX 2080. Figure 9 shows successful detection test results of vine
trunk bases and support post lower portions, which showed potential for connecting to
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form navigation paths for autonomous agricultural operation vehicles. The detected lower
points of trunks and support posts can be processed to generate left and right regression
lines connecting detected points, vanishing point calculation for perspective correction,
navigation path determination by comparing camera optical axis with detected center aisle
line, and steering angle calculation for autonomous vehicle guidance.

= o}

Figure 9. Detection test results showing successful identification of vine trunk bases and support
posts using the proposed base-width-based annotation method. The detected lower portions provide
reference points for generating navigation paths and steering guidance for autonomous agricultural
operation vehicles in vineyard environments.

The detected trunk and support post base points can be processed to generate several
useful outputs for autonomous navigation. Left and right regression lines can be created
by connecting the detected points, vanishing points can be calculated for perspective
correction, navigation paths can be determined by comparing the camera’s optical axis
with the detected central aisle line, and steering angles can be calculated for autonomous
operation vehicle guidance. These results confirm that the proposed annotation method can
be used to generate training data capable of supporting real agricultural robot applications.

The successful detection of vine trunk bases and support posts demonstrates that
focusing on the traversal-relevant portion of objects rather than complete visible struc-
tures aligns with the specific requirements of agricultural robots. The detection informa-
tion generated by the proposed method can be readily integrated with existing agricul-
tural robot control systems, providing computational efficiency that can meet real-time
processing requirements.

4. Discussion
4.1. Optimal Bounding Box Configuration Analysis

The comprehensive evaluation of eight different aspect ratios provides important
insights into optimal annotation strategies for agricultural object detection. The results
demonstrate that bounding box size and aspect ratio significantly affect model performance,
with different configurations showing preferences for different object classes. The consistent
underperformance of small configurations (T10xx and T15xx) suggests that insufficient
contextual information is captured when bounding boxes are too small. This finding aligns
with computer vision literature indicating that adequate context around target objects is
crucial for effective feature learning in convolutional neural networks [29]. The superior
performance of larger configurations (T20xx and T25xx) indicates that including more
contextual information around vine trunk bases improves detection accuracy. However,
performance plateauing and slight decrease in the largest configuration (T2550) suggests
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there is an optimal size beyond which additional context may introduce more noise than
useful information.

The analysis reveals that rectangular bounding boxes with twice the height of the
width generally show superior performance compared to square configurations. This
finding is particularly relevant for elongated objects such as vine trunks and support
posts, where natural object geometry favors vertical rectangles. Configuration T2040
(2.0W x 4.0W) achieved the highest mAP of 41.36%, demonstrating that vertically elongated
bounding boxes effectively capture essential features of both vine trunks and support posts.
This aspect ratio provides optimal balance between capturing sufficient trunk information
and maintaining computational efficiency. The superior performance of T1530 compared to
T1515 and T2040 compared to T2020 consistently supports the hypothesis that vertically
elongated bounding boxes are more suitable for detecting elongated agricultural objects
than square configurations.

Different optimal configurations for different classes emphasize the importance of
considering object-specific characteristics in annotation design. Support posts, being more
uniform and rigid structures, achieved best performance at T2020 (2.0W x 2.0W), while
vine trunks, having more variable and curved nature, showed best performance at T2525
(2.5W x 2.5W). This class-specific variation can be attributed to different information
content available within bounding boxes for each object type. Support posts maintain
consistent vertical alignment and uniform thickness, enabling effective detection with
more compact bounding boxes. However, vine trunks may exhibit curvature and varying
thickness, requiring larger bounding boxes to capture sufficient discriminative features.

4.2. Effectiveness of Base-Width-Based Annotation Method

The experimental validation demonstrates that the base-width-based annotation
method effectively generates valid training data for object detection models in agricultural
environments. Eight aspect ratio bounding boxes were generated based on vine trunk
base width, and optimal aspect ratios for each class (vine trunk, post) were experimen-
tally confirmed. The experimental results show that the T2040 combination (width 2.0,
height 4.0x) achieved the highest mAP performance (41.36%), establishing the optimal
bounding box configuration for vine trunk and post detection. This empirically proves that
the base-width-based annotation method serves as an effective data generation approach
for training object detection models in agricultural environments.

The base-width-based annotation method provides logical improvements to the an-
notation process compared to traditional annotation approaches in several aspects. First,
annotators only need to specify the left and right endpoints of vine trunk bases, minimiz-
ing subjective judgment regarding ambiguous boundary determination of trunk upper
portions. This significantly improves annotation consistency, particularly in agricultural
environments where upper boundaries are unclear due to irregular plant forms. Second,
since annotators only need to drag to appropriate points on the y-axis while maintaining the
x-axis position of right endpoints, mouse movement distance is substantially reduced. This
simplification of physical movements reduces wrist and shoulder muscle strain, decreasing
muscle fatigue. This reduction in physical burden is particularly significant in agricultural
robot development projects requiring large-scale annotation data generation.

The base-width standardized annotation method demonstrates the potential for estab-
lishing unified bounding box generation criteria for object recognition model development
in autonomous agricultural operations. Automatic bounding box generation based on base
width eliminates inter-annotator variability and ensures dataset consistency, enabling more
stable deep learning model training. This methodological improvement leads to three main
expected effects. First, improved annotation speed enables more efficient construction of
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large-scale training datasets required for agricultural robot development. Second, mini-
mization of subjective judgment and standardized generation processes improve training
data quality. Third, this methodology is expected to be applicable not only in vineyards but
also in other orchard environments such as apple orchards and pear orchards, contributing
to the proliferation of Al-driven agricultural automation technology.

4.3. Practical Implementation Considerations

Detection results demonstrate the practical feasibility of the proposed method for real
agricultural robot applications. Successfully detected vine trunk bases and support post
base points can be effectively processed to generate traversal information for autonomous
agricultural vehicles. The ability to connect detected points into regression lines and calcu-
late vanishing points provides the foundation for autonomous operation guidance systems.
By comparing the camera’s optical axis with detected central aisle lines, steering angles
can be calculated to guide unmanned ground vehicles (UGVs) along vineyard rows. This
practical application validates the core hypothesis that vine trunk base position detection is
sufficient for autonomous traversal in semi-structured agricultural environments.

The method’s focus on traversal-relevant portions of objects rather than complete
visible structures aligns with the specific requirements of agricultural robots. Detection
information generated by the proposed method can be readily integrated with existing
agricultural robot control systems, providing computational efficiency that meets real-time
processing requirements. The successful integration potential extends beyond immediate
detection applications to comprehensive navigation systems that can handle the dynamic
requirements of agricultural environments while maintaining the precision necessary for
safe and effective autonomous operation.

4.4. Comparison with Traditional Methods

The proposed method addresses several key limitations of traditional annotation ap-
proaches identified in the literature. Manual bounding box annotation has been recognized
as a significant bottleneck in dataset generation [23]. The proposed base-width-based
annotation method substantially reduces this time by eliminating the need for precise up-
per boundary determination. Traditional annotation methods require annotators to make
continuous decisions about bottom width, top width, and overall height for each bounding
box. This process becomes increasingly inefficient as the volume of required annotations
increases. The proposed method standardizes these decisions by automatically generat-
ing final bounding boxes based on vine trunk base width, eliminating inter-annotator
variability and improving dataset consistency.

The consistency improvement achieved through automatic bounding box generation
is particularly valuable in agricultural applications where high natural object variation can
cause inter-annotator inconsistencies. Studies have shown that annotation consistency is
crucial for stable object detection model training [22], and the proposed method’s standard-
ization directly addresses this issue. The physical ergonomics of the annotation process
also benefits from this approach. Traditional annotation of elongated objects requires large
mouse movements from top-left to bottom-right corners, leading to accumulated fatigue
and increased processing time with continued annotation work. The proposed method’s
short mouse drag distance reduces physical strain and enables faster and more accurate
annotation work.

Furthermore, the method’s adaptation to the specific requirements of agricultural
robots represents a departure from general-purpose annotation approaches. By focusing
on the lower portion crucial for object traversal, the method optimizes annotation effort for
specific application domains rather than attempting to capture complete object boundaries.
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This domain-specific optimization approach demonstrates how annotation strategies can
be tailored to meet the unique demands of specialized applications while improving both
efficiency and effectiveness.

4.5. Limitations and Future Research

While the proposed method demonstrates significant advantages, several limitations
must be acknowledged. The method is specifically designed for vertically oriented objects
in semi-structured environments and may not directly generalize to other agricultural
settings or object types without modification. The fixed aspect ratio approach, while
improving consistency, may not be optimal for all variations in trunk shape and size.
Future research could explore adaptive aspect ratio selection based on individual object
characteristics or integrate multiple aspect ratios within a single training dataset.

The evaluation was conducted in a controlled greenhouse environment, and validation
in outdoor vineyard conditions with varying lighting, weather, and seasonal changes would
strengthen the generalizability of the findings. Additionally, verification of applicability
across different grape varieties and cultivation methods is needed. For more quantitative
validation of the base-width-based annotation method’s effectiveness, actual annotation
work time measurement, annotator fatigue assessment, and statistical analysis of annotation
consistency are required. Research verifying applicability across various crop types and
cultivation environments is also needed to expand the versatility of this methodology.

The method’s performance could potentially be enhanced through integration with
semi-automatic annotation tools or active learning approaches that could further reduce
annotation time while maintaining quality. Through such additional research, standardized
annotation protocols for agricultural robot development can be established. The devel-
opment of adaptive systems that can automatically adjust aspect ratios based on object
characteristics, combined with machine learning approaches that can learn optimal config-
urations from minimal user input, represents promising directions for future development
in Al-driven agricultural automation applications.

5. Conclusions

This study proposed a base-width-based annotation method for vine trunk detection
in agricultural robotics applications and comprehensively evaluated eight aspect ratio
configurations. The experimental results demonstrated that bounding box size has a
decisive impact on object detection performance in agricultural environments. Larger
bounding box configurations consistently outperformed smaller ones, confirming the
importance of capturing sufficient contextual information for agricultural object detection.
Vertically elongated rectangular boxes proved more suitable than square configurations
for elongated agricultural objects, and different object types required different optimal
aspect ratios, emphasizing the need for object-specific annotation strategies. The base-
width-based annotation method was designed to minimize subjective boundary judgment,
reduce physical strain through shortened mouse movements, enhance data consistency
through standardized bounding box generation, and focus on object regions critical for
robot traversal. This method addresses practical challenges in agricultural robot dataset
construction by eliminating ambiguous judgment about trunk upper boundaries and
significantly reducing mouse movement distance required for annotation.

The study contributes to establishing efficient annotation protocols for agricultural
robot development and demonstrates expandability to other fruit tree environments. The
standardized bounding box approach is expected to improve the efficiency of artificial
intelligence technology development for agricultural automation.
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Future research will focus on validation in diverse field agricultural environments, quan-
titative analysis of annotation efficiency improvements, and application to other crops and
cultivation systems. The standardized annotation protocol established through this research is
expected to accelerate the development and deployment of autonomous agricultural robot
systems, contributing to the advancement of Al-driven agricultural automation technology
and the practical implementation of Al-driven solutions in agricultural environments.
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