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Abstract : The rapid advancement of robotics and deep learning has increasingly accelerated the use of Embodied Al, where
robots autonomously explore and reason in complex real-world environments. With the growing demand for domestic
service robots, efficient navigation in unfamiliar settings has become even more crucial. Object Goal Navigation (OGN) is a
fundamental task for this capability, requiring a robot to find and reach a user-specified object in an unknown environment.
Solving OGN demands advanced perception, contextual reasoning, and effective exploration strategies. Recent
Vision-Language Models (VLMs) and Large Language Models (LLMs) provide agents with external common knowledge
and reasoning capabilities. This paper poses the critical question: “Where should VLM/LLM knowledge be fused into

Object Goal Navigation?”” We categorize knowledge

integration into the three stages adapted from the

Perception-Prediction-Planning paradigm to offer a structured survey of Object Goal Navigation approaches shaped by the
VLM era. We conclude by discussing current dataset limitations and future directions, including further studies on socially
interactive navigation and operation in mixed indoor - outdoor environments.

Key words : Indoor navigation(AW&AY), Vision language model(B]A 1o &), Large language model(At2ioj 2 d),

Object goal navigation(Z-FE A 2HAT)
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“In my current view, [chair, table, oven] is visible.
~  With my common sense this place seems to be a [kitchen].
[Kitchen] is usually near [living room]
My target object is [sofa]. [sofa] has high relation of being in the [living room] and near [chair, tv].
Due to this, I should choose this frontier.” !
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Fig. 1 The agent leverages VLM/LLM to understand the scene (Perception), predict the target object location based on context

(Prediction) and selects the most promising frontier to explore (Planning)
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Fig. 2 The proposed framework for categorizing VLM/LLM
fusion process into three levels. Classifying fusion
strategies as Perception, Prediction and Planning
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2. Object Goal Navigation
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2.1 Formal Definition of Object Goal Navigation
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2.2 Evaluation Metrics
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2.3 Dataset
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Table 1 Comparison of object goal navigation datasets

Metric MP3D Gibson (4+) HM3D
Number of scenes 90 571 (106) 1,000
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2.4 The Common Core of Diverse Embodied Al Tasks
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2.5 Before the Advance of VLM/LLM
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2.6 Survey of Surveys
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3. Where to Fuse?
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Fig. 3 Two VLM approaches for scene object understanding
at the perception level. (1) Information Encoding,
VLM encodes information between the target object
label and image, often quantifies a similarity between
the visual input and the target object. (2) Textural
Description directly generates a natural language
description of objects visible in the current view
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3.1.2 Scene Spatial Relations Understanding
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3.2 Prediction Level Fusion
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3.2.1 Object Relation Construction

=3 A Az ¥ A B 1l 1S 7HsAdol A
thoeke A gol A zhe] Akl vl g
AE29 gajo] 7Ps sl o & Eol, Fig 4914 B
AR 2vbebd 23S Aok W) RO TV E



VLM Altie| S8 23| S4S 98t 2|4 S8 3 AH|0|

Target Object Object Relations

TS5 C

Sofa Coffee Table Toilet

“Which objects are commonly found near a sofa?”

Fig. 4 An LLM is prompted to output common object
co-occurrences. Given the target ‘sofa’, ‘TV’ and
‘coffee table’ are identified as highly related objects
while ‘toilet’ and ‘bed’ are quantified as less related
objects to ‘sofa’
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3.2.2 Semantic Layout Construction
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Room Layout

Corridor
Tl e

Kitchen

Bedroom

Bedroom
Corridor

@ >y Toilet + Mirror + Shower — bathroom

[Common Adjacencies]
(1) Bedroom nearby (2) Corridor connection (3) Not near kitchen

Fig. 5 Based on the objects in the current view such as
‘toilet’, ‘mirror’ and ‘shower’. LLM infers the room
type as ‘bathroom’ and predicts the layout of
unobserved areas by reasoning about common room
layout adjacencies
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N® Frontier #3
8 (Bed, Pillow, Lamp)

Frontier 1 contains [sofa, table]
Frontier 2 contains [drawer, tv]
Frontier 4 contains [chair, table, sink, refrigerator]

Scoring Selection
Frontier 1 : 0.2
Frontier 2 : 0.3

Direct Selection

Frontier 4 : 0.3

Fig. 6 Two distinct strategies for Frontier Selection. Scoring
Selection, LLM assigns a quantitative score to each
frontier based on the semantic relevance of the
objects it contains. Direct Selection LLM acts as a
high-level decision maker directly choosing the next
best frontier on all available context
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@ (b

Fig. 7 Visual method for frontier selection. (a) Candidate

waypoints are projected onto the egocentric view, (b)
Candidate waypoints are directly evaluated and
selected for the next waypoint
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3.3.2 Re-Validation
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€ At viewpoint 1, this object seems to be a ‘bed”
e @ At viewpoint 2, this object seems to be a ‘sofa’
€ At viewpoint 3, this object seems to be a ‘sofa’

This object is a ‘sofa’

(@)

?
I
| pas ‘My current frontier goal is frontier 1.
1@? Let me double check if frontier 2 is more promising’
\
l
BN

Frontier 2
[ ]

—
~—

(b)

Fig. 8 Re-validation strategies at the planning-level for
robust navigation. (a) The agent accumulates
evidence from multiple viewpoints to confirm the
identity of a potential target object, reducing false
positives, (b) The agent continuously reassesses its
chosen path in relation to other frontiers, thereby
enabling dynamic backtracking or replanning
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4. Open Challenges and Research Opportunities
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Multi-floor navigation®} OGN with humans present 5 &
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Fig. 9 An example of reconstruction artifacts (or defects)
found in real-world scan datasets. The depth image
(right) shows significant data loss also called ‘holes’

or ‘black cracks’

4.1 Dataset Limitation and Opportunities
4.1.1 Issues in Existing Datasets
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4.2 Expanding OGN Task

4.2.1 Beyond Single Floor
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4.2.2 Object Goal Navigation with Humans Present
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Fig. 10 Example of social compliant navigation and socially
interactive navigation
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4.2.3 Mixture of Indoor and Outdoor Environments
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