USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

Para-ksm: Parallelized Memory Deduplication with
Data Streaming Accelerator

Houxiang Ji, University of Illinois Urbana-Champaign; Minho Kim and
Seonmu Oh, Daegu Gyeongbuk Institute of Science and Technology; Daehoon Kim,
Yonsei University; Nam Sung Kim, University of Illinois Urbana-Champaign

https://www.usenix.org/conference/atc25/presentation/ji

This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7-9, 2025 « Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference
is sponsored by

alllasc &llall aeala

King Abdullah University of
Science and Technology

N

LS

ARTIFACT
EVALUATED
zusenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

Para-ksm: Parallelized Memory Deduplication with Data Streaming Accelerator

Houxiang Ji¥ Minho Kim*

Seonmu Oh¥

Daehoon Kim* Nam Sung KimY¥

VUniversity of Illinois Urbana-Champaign
tDaegu Gyeongbuk Institute of Science and Technology
*Yonsei University

Abstract

To tame the rapidly rising cost of memory in servers, hyper-
scalers have begun deploying memory deduplication features,
such as Kernel Same-page Merging (ksm), for some of their
services. Nonetheless, ksm incurs a datacenter tax signifi-
cant enough to notably degrade performance of co-running
applications, which hinders its wider and more aggressive
deployment. Meanwhile, the server-class CPU has started to
integrate various on-chip accelerators to effectively reduce
datacenter taxes. One of such accelerators is Data Streaming
Accelerator (DSA), which can offload the two most taxing
functions of ksm, page comparison and checksum computa-
tion, from CPU. In this work, we demonstrate that ksm offload-
ing these two functions to DSA (DSA-ksm) can reduce the
performance degradation of co-running applications caused
by ksm from 1.6-5.8x to 1.0-1.6x. However, we uncover that
DSA-ksm, which naively replaces CPU-based functions with
their DSA-based counterparts, yields significantly lower rates
of memory deduplication than ksm due to the long latency of
offloading these functions through on-chip PCle. To address
this shortcoming, we redesign ksm to exploit DSA’s batching
capability (Para-ksm). It facilitates a given function to oper-
ate on multiple pages per offload, rather than a single page
as ksm does, thereby amortizing the long offloading latency.
Compared to ksm, Para-ksm increases the amount of memory
deduplication per CPU cycle used for ksm by 31-50% while
decreasing the performance degradation to 1.3-2.7x.

1 Introduction

Memory technology scaling has stagnated, while the memory
manufacturing cost has steadily increased, leading to a rise in

“This work was supported in part by a grant from PRISM, one of the
seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, by grants from Institute of Information &
Communications Technology Planning & Evaluation (IITP) funded by the
Korea government (MSIT) (No. 2018-0-00503, RS-2024-00396013, No.RS-
2024-00459797), and by a grant from the MSIT, Korea, under the Global
Scholars Invitation Program (RS-2024-00456287) supervised by the IITP.

the cost per bit [28]. At the same time, hyperscale applications
demand increasingly larger memory capacities. These make
memory account for 30-50% of the total hardware cost of a
server [18,38]. Meanwhile, virtualization techniques, such as
Virtual Machines (VMs) and containers, are widely employed
by hyperscalers to provide performance scalability and isola-
tion for serving hyperscale applications. However, they often
inefficiently use the given memory capacity, as they duplicate
code and data across VMs and containers. Past work shows
that redundant or duplicated memory pages consume 11%—
86% of memory capacity, depending on the applications and
operating systems [2,21].

OS memory deduplication features, such as Kernel Same-
page Merging (ksm), have been shown to effectively utilize
memory capacity by significantly reducing duplicated mem-
ory pages [20,31]. For example, Meta employs ksm to reduce
memory pressure caused by running many Instagram worker
processes on each server with limited memory capacity [35].
Nonetheless, recent work has reported that ksm not only im-
poses a high datacenter tax (e.g., consuming 14-65% of total
CPU cycles in our evaluation), but also pollutes the cache
hierarchy, both of which are significant enough to degrade the
performance of co-running applications [14]. Especially, page
comparison (memcmp) and checksum computation (xxhash)
in ksm are the two most taxing functions, collectively account-
ing for 38% of the CPU cycles consumed by ksm according
to our analysis (§3).

To effectively reduce rising datacenter taxes, the latest
server-class CPU has started integrating various on-chip ac-
celerators capable of offloading common functions in the low
levels of the datacenter software stack from CPU cores. For ex-
ample, four on-chip accelerators have been integrated into the
Intel Xeon Scalable Processor since its 4™ generation. Com-
pared to comparable off-chip accelerators, such as SmartNIC
(SNIC) connected to CPU via off-chip PCle [9, 19,23-25],
these on-chip accelerators offer several advantages, including
reduced offloading latency, streamlined memory management,
improved virtualization support, owing to their tight integra-
tion with CPU through on-chip PCle and other supporting

USENIX Association

2025 USENIX Annual Technical Conference 1197

subsystems [40]. One of such on-chip accelerators is Data
Streaming Accelerator (DSA), integrated to offload data move-
ment and transformation functions, including memory copy,
memory comparison, and checksum computation.

In this work, we not only explore the unique capabilities
of DSA for ksm but also redesign ksm to efficiently offload
memcmp and xxhash from CPU, significantly reducing the
datacenter tax and performance degradation of co-running
applications. We make the following specific contributions.
Contribution-1: Identifying opportunities in offloading
ksm to DSA (§3-4). First, we demonstrate that offloading
memcmp and xxhash to DSA, with a specific operating mode,
can reduce the CPU cycle consumption for these functions by
6.6x and 6.0, respectively, while obviating cache pollution.
Although CPU may use non-temporal load instructions such
as MOVNTDQA to prevent these functions from polluting the
cache hierarchy, we show that they incur even more CPU cy-
cle consumption than temporal load instructions. Second, we
present DSA-ksm, which directly replaces CPU-based memcmp
and xxhash with their DSA-based counterparts in ksm, reduc-
ing the performance degradation of co-running applications
incurred by ksm from 1.6-5.8x to 1.0-1.6x. Nonetheless,
we also uncover that these DSA-based functions take nearly
3% longer to return their results than their CPU-based coun-
terparts although they yield CPU to other application pro-
cesses during that time. Such long offloading latency makes
DSA-ksm offer notably lower rates of memory deduplication
than ksm. Lastly, we identify that leveraging the DSA’s batch-
ing capability, which allows memcmp and xxhash to operate
on multiple pages per offload, can significantly amortize the
offloading latency (e.g., by 81-83% with a batching size of
8), but it requires a significant redesign of ksm.

Contribution-2: Redesigning ksm to efficiently exploit the
DSA’s batching capability (§5). ksm scans pages to find
those that can be merged while maintaining two Red-Black
(RB) trees: stable and unstable trees, which store pointers to
merged and previously scanned pages, respectively. It first
picks a candidate page and compares it with pages in these
trees (named tree pages) using memcmp. Then, based on the re-
sult of comparing the candidate and current tree pages, it deter-
mines the next tree page to compare with the candidate page
and whether to compute the checksum of the candidate page
using xxhash. That is, ksm is inherently a serial algorithm,
and, consequently, DSA-ksm cannot exploit the DSA’s batch-
ing capability, which requires selecting multiple tree pages
to compare with the candidate page or multiple candidate
pages to compare with a tree page. To tackle the shortcom-
ing of DSA-ksm, we propose Para-ksm, a significant redesign
of ksm that allows memcmp and xxhash to operate on multi-
ple pages in parallel (or offload these functions to DSA for
multiple pages in a batch). Specifically, we explore two al-
gorithms: Para-ksmC, which compares multiple candidate
pages with a single tree page, and Para-ksmT, which specu-
latively compares a single candidate page with multiple tree

pages concurrently. However, we focus on Para-ksmC in this
work, as we find that Para-ksmT significantly wastes DSA re-
sources due to its speculative nature. Para-ksmC increases the
amount of memory deduplication per CPU cycle used for ksm
by 31-50% while decreasing the performance degradation of
co-running applications incurred by ksm from 1.6-5.8x to
1.3-2.7x%.

2 Background

2.1 Memory Deduplication

Memory deduplication has been developed to consolidate
duplicate pages in memory, thereby improving memory uti-
lization of a given memory capacity. One widely adopted im-
plementation of memory deduplication is Kernel Same-page
Merging (ksm), a feature integrated into Linux since kernel
version 2.6. ksm is a Content-Based Page Sharing (CBPS)
approach that scans the anonymous memory regions of pro-
cesses to identify pages with the same contents, merges them,
and subsequently reclaims the freed space.

The ksm daemon, ksmd, operates on the memory
regions specified by the madvise system call and is
controlled through parameters exposed in sysfs un-
der sys/kernel/mm/ksm, such as pages_to_scan,
sleep_millisecs, and max_page_sharing [37]. The key
data structures of ksm are two Red-Black (RB) trees: stable
tree and unstable tree. The stable tree stores pointers to all
merged pages. If a process modifies a merged page, the
Copy-on-Write (CoW) mechanism creates a copy of the page.
In contrast, the unstable tree keeps pointers to scanned pages
that have not yet been merged. Henceforth, we refer to the
pages pointed to by the stable and unstable trees as stable tree
pages and unstable tree pages, respectively. Both trees sort
and organize the tree pages based on their contents, using the
page content as the index to insert and look up a given page.

Figure | illustrates a single ksm scan over an advised mem-
ory region. During the scan, ksmd sequentially selects each

KSM scan Page comp.

in stable tree

Scan next
candidate
age

Clear

unstable tree ,' [user space‘App. 0‘ ‘App. 1 H

I’ [kernel space }
[d
|
[Or}-chip inter :onn:ect]
I DSA [|Mem.cCtr.]|

I
AY
7| Memory|

Merge with
pages in
stable tree

Update
checksum
Merge pages

& insert into
stable tree

Insert
page into
unstable tree

Page comp.
in unstable tree

Figure 1: ksm scan process (left) and page checksum compu-
tation running on CPU (right).

1198 2025 USENIX Annual Technical Conference

USENIX Association

candidate page and searches for a matching page in the stable
tree. If a match is found, the candidate page is merged into
the stable tree, and its memory region is freed. If no match
is found in the stable tree, ksmd computes a checksum of the
candidate page’s content and compares it with the checksum
from the previous scan. A mismatch between these two check-
sums indicates that the page has been modified between two
scans, prompting ksmd to proceed to the next candidate page.
If the checksums match, ksmd searches for a matching page
in the unstable tree. If a match is found, the candidate page
is inserted into the stable tree, the matched page is removed
from the unstable tree to free the associated memory region,
and the attribute of the candidate page is changed to read-only
with CoW protection. If no match is found, the candidate page
is inserted into unstable tree for future scans.

2.2 Data Streaming Accelerator

Hardware architecture. Figure 2 overviews the architecture
of DSA. A CPU core interacts with DSA by directly sub-
mitting work descriptors to @) memory-mapped registers of
DSA, referred to as portals. A work descriptor encapsulates
the key information required to set up the offloading operation,
such as the operation type, one or more source memory region
addresses, and the completion record address. The operational
unit of DSA is @ Group, comprising Work Queues (WQs)
and Processing Engines (PEs). The number of WQs and PEs
within a group is flexibly configurable by a user through the
software interface of DSA. @ The Group arbiter dispatches
the descriptors at the heads of WQs to available PEs, consid-
ering the relative priority of WQs set for QoS control. Upon
receiving a work descriptor, @ a PE reads and operates on
one or more source memory regions specified in the work
descriptor through the cache-coherent on-chip interconnect,
and updates the destination memory region if necessary and
the completion record in host memory. The virtual address
is used to access host memory, assisted by e the on-device
Address Translation Cache (ATC). ATC handles the address
translations, sends requests to the IOMMU on the CPU, and
handles page faults in coordination with the OS. This new
feature allows both CPU and DSA to access shared memory
regions in the virtual address space without memory pinning.

I 1/O fabric \
Irr

Portals

—

Group 09 9 Process engine 0 Batch WD O || WD processing
Batch processing |—WD 1 unit (@
descriptor (BD) unit WON
Work CRC32
Work L .. 1]
Queue 1 descriptor (WD
Process engine 1 ‘

‘ Submit work ‘ ‘ Update config ‘ ‘ Address translatlon ‘ ‘ Mernory access
[T
Work
wa2 | \ "
WQ N 1] ‘ Process engine M-1 ‘

ddress (ranslatlon Memory rd/wr
‘ waQ confg ‘ B cache ATC Hﬁ‘
Queue 0
Figure 2: Architecture overview of DSA.

Arbiter

Software stack. The Intel Data Accelerator Driver (IDXD)
is a kernel-mode driver responsible for initializing and man-
aging DSA [10]. It provides two interfaces: a character de-
vice (cdev) interface for data-plane operations and a sysfs
interface for control-plane configuration. In user space, ap-
plications can use the libaccel-config library to configure
DSA and submit work descriptors to portals, exposed as cdev
through mmap. However, there is no dedicated library existing
for kernel-space DSA configuration and usage.

3 Opportunity in Offloading ksm to DSA

Prior work has reported that ksm incurs significant CPU cycle
consumption when invoked [4, 14], disrupting the execution
of co-running applications. In this section, we first break
down the CPU cycles consumed by ksm to identify its CPU-
intensive functions. Second, we demonstrate the potential of
offloading these CPU-intensive functions to DSA.

3.1 CPU-intensive Functions of ksm

To show the considerable CPU cycle consumption by ksm,
we pick a period that ksm co-runs with Redis on a CPU core.
When ksm is invoked, we measure not only the overall CPU
utilization but also the CPU utilization contributed by ksm
and Redis separately. Figure 3 (left) shows that ksm increases
CPU utilization by 14-65%, which is significant enough to
degrade Redis performance when co-running.

Delving into the CPU utilization by ksm, we analyze the
breakdown of CPU cycles by each function of ksm. Figure 3
(right) shows that memcmp and xxhash—which compares two
pages and computes a 32-bit checksum value of a page—
consume 21% and 17% of CPU cycles, respectively. These
two functions perform simple operations compared to other
functions of ksm. However, as they operate on thousands of
pages per invocation, they collectively account for 38% of the
CPU cycles consumed by ksm. Moreover, to operate on these
pages, memcmp and xxhash need to bring them into the cache
hierarchy, which incurs cache pollution [14, 15]. Although
non-temporal or cache-bypassing load instructions, such as
MOVNTDQA, can be used to implement these two functions,
they are known to give lower bandwidth and higher latency

m Redis ®KSM

100

®
S

= memcmp
xxhash
page selection
tree traversal
= others

CPU Util. (%)
N A O
o O O O

0 20 40 60 80 100 120
Time (s)

Figure 3: A snapshot of CPU utilization in a system where
CPU-ksm co-runs with Redis under the YCSB-d workload
and a detailed breakdown of CPU cycles consumed by ksm’s
functions.

USENIX Association

2025 USENIX Annual Technical Conference 1199

u32 (, PAGE_SIZE, 0)({
struct dsa_hw_desc = { };
struct dsa completion record ;

// @ Descriptor preparation

.opcode =

.src_addr =

.xfer_size = PAGE_SIZE;

.status = 0;

.completion_addr = (uintptr t)é& 8

.flags = IDXD OP FLAG RCR|IDXD OP_FLAG CRAV;

// @ Descriptor submission
(wg_portal, &)2

// ® Descriptor completion check
(&)i
(ksm) ;

return .result

}

Figure 4: Pseudo-code of DSA-based xxhash using asyn-
chronous mode.

than temporal load instructions, proportionally consuming
more CPU cycles. In contrast, DSA can perform these two
functions while consuming far fewer CPU cycles than CPU
without causing cache pollution.

3.2 Comparison between CPU and DSA: CPU
Cycle Consumption

Among many DSA native operations, we can use ‘Com-
parison’ and ‘CRC Generation’ to implement memcmp and
xxhash, respectively. Figure 4 depicts the pseudo-code of
DSA-based xxhash. (1) A CPU core first prepares a 64B work
descriptor specifying (1) ‘CRC Generation’ as the operation
to perform, (2) the address of a source page for checksum
computation, (3) 4KB as the transfer size, (4) the address to
write the checksum value as the completion record, and other
fields. Q) Then the CPU core submits the work descriptor to
DSA by executing a single instruction, ENQCMD. When DSA
receives the work descriptor, its processing engine directly
operates on the source page without transferring the page into
the cache hierarchy. After completing the checksum compu-
tation, it writes the checksum value to the completion record
address. DSA supports two operating modes: synchronous
and asynchronous modes. In synchronous mode, after sub-
mitting a work descriptor to DSA, the process continuously
polls the completion record address until it receives the value
returned by DSA. 3 In asynchronous mode, however, the
process yields the CPU core to another process instead of
polling, and it resumes execution upon receiving an interrupt,
i.e., a notification of work completion, from DSA.

Figure 5 compares the CPU cycle consumption by DSA-
based memcmp and xxhash in kernel space with that of CPU-
based counterparts. ‘CPU-t’ and ‘CPU-nt’ denote CPU-based
memcmp and xxhash implemented using temporal and non-
temporal load instructions, respectively. To avoid cache in-
validation overhead from non-temporal loads, the associated

pages are placed at random memory addresses and are not
present in the CPU cache hierarchy. ‘DSA-s’ and ‘DSA-a’
represent DSA-based memcmp and xxhash implemented us-
ing synchronous and asynchronous modes, respectively. Our
findings from Figure 5 are as follows. First, DSA-a-based
memcmp and xxhash consume 6.6x and 6.0x fewer CPU cy-
cles than their CPU-t-based counterparts, respectively, as they
consume CPU cycles only for preparing and submitting a
work descriptor and retrieving the completion record. Sec-
ond, CPU-nt does not cause cache pollution as DSA, but it
consumes 1.1-3.2x more CPU cycles than CPU-t. We use
MOVNTDQA as CPU-nt in kernel space, which requires full FPU
state, thereby increasing CPU cycle consumption compared
to CPU-t. Lastly, DSA-s-based memcmp and xxhash consume
CPU cycles comparable to their CPU-t-based counterparts,
respectively. Since they do not reduce a meaningful amount
of CPU cycle consumption compared to their CPU-t-based
counterparts, we use DSA-a-based memcmp and xxhash to
implement DSA-based ksm in this work.

4 DSA-ksm: CPU-DSA Cooperative ksm

We have demonstrated that memcmp and xxhash consume a
significant number of CPU cycles when ksm is invoked, and
that they can be offloaded to DSA to considerably reduce the
CPU cycle consumption compared to those executed by CPU.
Since DSA-based memcmp and xxhash decrease the consump-
tion of CPU cycles without incurring cache pollution com-
pared to their CPU-based counterparts, they can significantly
reduce the performance degradation of co-running applica-
tions (§6). In this section, we present CPU-DSA cooperative
ksm (DSA-ksm), where DSA performs memcmp and xxhash
(collectively referred to as data-plane functions hereafter)
while CPU executes the remaining control-plane functions
(e.g., a function selecting the next candidate page to scan)
to minimize the performance degradation of applications co-
running with ksm. This work differs from prior approaches
that offload these data-plane functions to off-chip PCle accel-
erators [7, 14], because it not only exploits innovations in the
on-chip PCle accelerator ecosystem [40] but also advances
the ksm algorithm to fully capitalize on the capability of DSA.
Workflow. We first implement DSA-based memcmp and
xxhash using the APIs provided by the IDXD driver (§2.2)
and then build a kernel-space library integrating these func-

CPU cycles (K)
S a8

o o

CPU-t TCPUmtTDSA@ TDSA@ ‘CPU4 TCPUmtTDSAe TDSA@
memcmp xxhash

Figure 5: CPU cycle consumption of CPU and DSA-based
memcmp and xxhash.

1200 2025 USENIX Annual Technical Conference

USENIX Association

[user space App. 0 App. 1]
[kernel space |_cust. lib]

| Core 0 || Core 1 | |Core N| portal
I I S p—— ,
[LLC il | | H@waq
| On-chip interconnect (=i i
I } i
\ Memory controller i I i
I !
| !
| !

Memory|

1
PE @
| DSA

Figure 6: DSA-ksm workflow.

tions, enabling them to be invoked directly from ksm running
in the kernel space. In contrast to prior work [7, 14], DSA-ksm
leverages DSA’s virtual memory support, eliminating the need
for memory pinning and virtual-to-physical address trans-
lation, thereby simplifying kernel integration and reducing
overhead.

Figure 6 depicts the workflow of DSA-ksm. To execute ei-
ther memcmp or xxhash, 0 DSA-ksm invokes the correspond-
ing function from the library, first preparing a work descriptor
that includes the virtual addresses of memory pages to operate
on. @ Subsequently, it submits the work descriptor to a work
queue (WQ) through a DSA portal. After the successful sub-
mission, the process sleeps to yield the CPU core to another
process (e.g., a co-running application) until it receives an
interrupt from DSA. Receiving the work descriptor from the
WQ, a processing engine (PE) @) reads the page(s) specified
in the work descriptor from host memory into its internal
buffer and @ conducts the operation specified in the work
descriptor. As soon as DSA completes the operation on the
entire page(s), @ it writes the completion record comprising
the result to the corresponding address and sends an interrupt,
which wakes up the process. Then, resuming the execution,
the function reads the completion record and returns the result
to DSA-ksm. To minimize the performance cost of handling
interrupts, we choose to sleep for a fixed amount of time,
wake up, and poll the completion record, observing that the
completion latency exhibits little variance.

Alleviation of long offloading latency. Although DSA-based
memcmp and xxhash considerably decrease the consumption
of CPU cycles without incurring cache pollution compared
to their CPU-based counterparts, we find that using DSA de-
creases the memory deduplication rate. Figure 7 shows that
when the batch size is 1 (submitting one work descriptor per
offload), DSA-based memcmp and xxhash present 2.6 x and
2.7x longer latency than CPU-based counterparts, respec-
tively. The increased latency is attributed to the time taken to
submit a work descriptor and receive the notification of com-
pletion, denoted by ‘submission’ and ‘waiting’, respectively.
While the waiting latency includes the execution time of a
given function in DSA, both submission and waiting laten-

preparation msubmission © waiting

A~ O

offload (us)

Latency per 4KB
o N

xxhash

memcmp

Figure 7: Latency of memcmp and xxhash running on CPU
and DSA with varying batching size.

cies for offloading a function operating on a 4KB page are
dominated by the communication time between the CPU core
and DSA over on-chip PCle [11]. Compared to SNIC-based
offloading over off-chip PCle [14] , DSA still achieves lower
latency (e.g., 6us versus 17us for xxhash), as off-chip PCle
incurs longer round-trip latency [40] and additional RDMA
stack overhead.

To reduce the latency, instead of submitting a work descrip-
tor one at a time, we can submit a batch descriptor (BD) to
DSA [17], which specifies the starting address of an array
of work descriptors and the number of work descriptors in
the array. The memory regions that these work descriptors
specify for DSA to operate on do not need to be contiguous.
The batch descriptor is submitted to a WQ through a portal
in the same way as a work descriptor. However, receiving
the batch descriptor, a batch processing unit fetches all the
work descriptors in the array in a single PCle transaction,
forwards them to the processing unit for execution, and writes
the completion records of the work descriptors in another
PCle transaction.

Figure 7 demonstrates that larger batch sizes decrease the
average processing latency per work descriptor. For instance,
a batch size of 8 offers 81% and 83% lower latency than the
batch size of 1 for memcmp and xxhash, respectively. This no-
table latency reduction is primarily attributed to the reduced
cost of (1) communication between CPU and DSA for sub-
mitting work descriptors and receiving completion records
over PCle, and (2) context switching between the ksm process
and the application process. Note that the PCle communi-
cation latency is dominated by other overheads rather than
data transfer time when the data-transfer size is small [17]. To
benefit from DSA’s batching capability, ksm should be able
to select multiple tree pages to compare with the candidate
page or multiple candidate pages to compare with a tree page.
However, it is not designed to do so as it is a serial algorithm.

5 Para-ksm

DSA batch processing effectively amortizes the long latency
of offloading functions from CPU (§4), increasing the rate of
memory deduplication. However, the vanilla ksm implemen-
tation inherently lacks parallelism to leverage DSA batch pro-
cessing. To address this shortcoming, we propose Para-ksm,

USENIX Association

2025 USENIX Annual Technical Conference 1201

a parallelized ksm optimized for efficient batch processing.
Para-ksm significantly accelerates the deduplication process
by batching data-plane functions associated with candidate
page and further exploring batching strategies for tree page.

5.1 Sequential Processing in ksm

memcmp and xxhash are used to identify matching pages dur-
ing the searches in stable and unstable trees, and to verify
whether page contents have been modified between scans. We
identify two Bottlenecks that impede the parallel processing
of these data-plane functions: (B1) single candidate page se-
lection and (B2) ordered comparisons in tree search, which
stem from the properties of the trees employed by ksm.
Single candidate page selection. As illustrated in Figure 1,
ksm selects one candidate page at a time from the advised
memory region. It then searches for the matching page by
sequentially comparing candidate page with tree pages and
computes a checksum of its content if necessary. This design
naturally leads to the sequential execution of data-plane func-
tions, significantly limiting parallelism. The root cause lies
in the rebalancing process of the RB trees used in ksm. An
RB tree, as a type of self-balancing binary search tree (BST),
maintains balance by performing recoloring and/or rotations
after each node insertion or deletion, keeping a longest-to-
shortest path ratio of at most two. This rebalancing ensures
efficient search operations in the RB tree with a time complex-
ity of O(logN), where N is the number of nodes in the tree.
However, rebalancing prevents batch processing of candidate
pages because inserting even one candidate page can modify
the tree structure, invalidating comparisons already performed
for other candidate pages in the same batch.

Ordered comparisons in tree search. ksm manages the mem-
ory pages using two RB trees, unstable tree and stable tree,
which store pointers to pages and organize them in a lexico-
graphical order based on page contents. This ordering enables
efficient binary searches within the trees to find matching
pages by avoiding unnecessary comparisons. However, since
each comparison determines the next search direction, com-
parisons along the search path must be performed sequentially.
For example, DSA-ksm typically needs to submit four separate
WDs sequentially to complete a search in a four-level RB tree,
as the selection of the tree page in each WD depends on the
previous comparison result returned by DSA. As shown in
Figure 7, this sequential approach can result in higher latency
per function than CPU-based counterparts, compromising the
memory-saving performance of DSA-ksm.

5.2 Para-ksmC: Candidate Page Batching

To eliminate B1, Para-ksm enhances vanilla ksm by incorpo-
rating candidate page batching and redesigning tree search
and insertion (Para-ksmC). Para-ksmC selects N consecu-
tive candidate pages from the advised memory region, groups

them into a single batch, and conducts data-plane functions
over the batch in a parallelized manner. These parallelized
memory comparisons and checksum computations are of-
floaded to DSA using batch descriptors to exploit DSA’s batch
processing capabilities. As the batch processing of xxhash
functions on candidate pages is straightforward, this section
focuses on how Para-ksmC supports and leverages batch
processing of memcmp functions in the renovated search and
insertion design. In particular, we use unstable tree search and
insertion as an example in this section, since the operations
in the stable tree are structurally identical.

5.2.1 Searchin Para-ksmC

Para-ksmC selects 256 consecutive memory pages to build a
candidate page batch based on a thorough parameter search
(§6.5). Since candidate pages are pre-allocated before ksm
execution and their volume is typically sufficient, Para-ksmC
does not wait to accumulate a full batch of 256 candi-
date pages. If fewer pages remain during a ksm scan pass,
Para-ksmC immediately offloads all remaining pages to the
DSA, avoiding unnecessary delays. Before starting the tree
search, Para—ksmC creates a search_result for each can-
didate page in the batch, which encapsulates the addresses
of candidate page as well as the addresses of its predecessor
and successor in the tree. The predecessor and successor of a
candidate page are defined as follows:

max{s € S|s <x} (1)
min{s € S | s > x})

predecessor(x,S) =

successor(x,S) =

, where S is the set of compared tree pages.

The addresses of predecessor and successor are initial-
ized as NULL in search_result. Para-ksmC leverages a
key Property of RB trees: (P1) rebalancing does not alter
the predecessor or successor of a candidate page. Based on
P1, Para-ksmC uses search_result to track the addresses
of predecessor and successor, as each candidate page is al-
ways inserted as a child of either its predecessor or succes-
sor. This approach eliminates repeated searches for a proper
insertion spot after tree rebalancing caused by other candi-
date pages from the batch. Further details on the usage of
search_result are provided in Section 5.2.2.

Figure 8 illustrates how Para-ksmC performs tree search in
a three-level tree as an example. For simplicity, numerical val-
ues in nodes represent page contents, and the arrows indicate

WDO | WD1 | WD2
’BDO H(SO 66) | (50, 20) | (50, 89

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

WDO | WD1 | WD2

|
’Bm 67, 66)| (17, 20)| 67, sg)‘ [> < < i
777777 WDO [WD1 [W2 | r o« |
’BDZH(M 66)| (43, 20) | (92, sg)‘ [<.>>1,

Figure 8: Search in Para-ksmC.

1202 2025 USENIX Annual Technical Conference

USENIX Association

~100
90 A
80
70 |
60 A
50

Utilization of BD (%

1 2 4 8 16 32 64 128 256 512 1024

Batch size
Figure 9: Utilization of BD in Para-ksmC with varying can-
didate page batch sizes.

search paths for candidate pages, with each path highlighted
in the same color as the corresponding candidate page. The
search starts at the root node. Para-ksmC prepares a list of
WDs, each containing the address of a candidate page and the
address of a tree page pointed to by the root node. A BD is
then created to point to the WD list and submitted to DSA for
batch processing of memcmp functions. Based on the compar-
ison results returned from DSA, the WDs are updated with
the addresses of the next selected tree pages for further com-
parisons with candidate pages. The search for each candidate
page terminates when a matching page is found or when a leaf
node is reached. During the search, predecessor and successor
addresses in the search_result are dynamically updated
based on comparison outcomes. If the encountered tree page
is smaller than the candidate page, predecessor address is
updated to the address of the tree page; if larger, successor
address is updated. If the tree page and candidate page are the
same, both successor and predecessor addresses are set to the
address of this matching tree page. While Para-ksmC offloads
memcmp operations to DSA efficiently in a batching manner, it
preserves the original comparison paths of CPU-ksm to main-
tain correctness, without altering the tree traversal logic.

Unlike CPU-ksm, which interleaves page comparison and
tree insertion for each page, Para-ksmC decouples the two
stages by first conducting comparisons and then inserting
pages in the batch, achieving similar per-page comparison
and insertion times as CPU-ksm. To enable this, Para-ksmC
processes all candidate pages in the batch simultaneously
by deferring tree operations, such as insertion or deletion,
until searches for all candidate pages in the batch are com-
plete. This approach removes the dependency on sequential
candidate page selection, preventing tree rebalancing from
interfering with the search paths of other candidate pages
within the batch. However, this design introduces a potential
issue dubbed comparison skewness. More specifically, during
the search, the number of comparisons required for different
candidate pages within the same batch can vary notably, lead-
ing to underutilization of BD and diminishing the benefits of
batch processing. For example, in a batch of three candidate
pages, one candidate page may find its matching page after
five comparisons, while the other two require ten. As a result,
Para-ksmC submits ten BDs to complete the comparisons for
the entire batch, even though only two WDs remain in the
WD list after the fifth BD. We examined the BD utilization

on memcmp functions across various batch sizes, where utiliza-
tion is defined as the ratio of the number of WDs in the list
to the preset candidate page batch size. Figure 9 presents the
utilization of BD when Para-ksmC co-runs with Graph500
(§6). The utilization remains above 90% when batch sizes are
below 16. However, as the batch size increases, utilization
drops sharply, falling below 60% at the batch size of 512.
This underutilization of BD indicates an increasing skewness
in larger batches, reducing the benefits of batch processing
on DSA and highlighting the need for a careful batch size
selection to maximize the effectiveness of Para-ksmC.

5.2.2 Insertion in Para—-ksmC

After completing the search for all candidate pages in the
batch, Para-ksmC proceeds to insert them into the unsta-
ble tree. Para-ksmC tracks the predecessor and successor
of each candidate page in the search_result (§5.2.1) and
uses a hash table to group search_results based on the
hash value of the predecessor address as shown in Figure 10.
We leverage another property of RB trees: (P2) two candidate
pages either share the same pair of (predecessor, successor)
or have distinct non-overlapping pairs. By P2, we know that
the search_results in the same group share the same suc-
cessor. After adding all search_results into the hash table,
Para-ksmC traverses the hash table to insert candidate pages
as outlined in algorithm 1.

If a group in the hash table contains only one
search_result, the candidate page is inserted as either the
left child of successor or the right child of predecessor, using
the addresses recorded in search_result. Since groups have
disjoint (predecessor, successor) pairs, inserting a candidate
page in one group does not affect insertions in other groups.
For groups with multiple search_results, Para-ksmC sorts
them in descending order based on the content of candidate
pages pointed to by each search_result, using the CPU-
based memcmp function. If the same pages are found in the
group, they are merged and inserted into stable tree directly,

Algorithm 1: unstable tree insertion in Para-ksmC.

1 for group € hash_table do

if len(group) > 1 then

compare_and_reorder(group)
update_succ(group)

for search_result € group do
cand_page = search_result[0]
(pred, succ) = search_result[1]
if pred.right == NIL then

‘ pred.right = cand_page
else

‘ succ.left = cand_page
Rebalance the tree.

e % N M R W N

e e
N o= 2

USENIX Association

2025 USENIX Annual Technical Conference 1203

r search by DSA

compare and reorder

Hash

Candidate
tabl
page batch . e

s, 67)‘ ’(67 92)”(67 92)”(67 %) | table ‘(17 43)| ’(54 67)‘ ’(67 %‘mw\?m«?w)

Hash:

update successor

group search results

Figure 10: Insertion in Para-ksmC. Blue arrows point to the insertion locations in unstable tree.

and their corresponding search_results are removed. The
successor address in each remaining search_result is then
updated to the candidate page address in the preceding
search_result in the sorted group. This intra-group sort-
ing and successor update ensure that search_result records
the correct predecessor and successor, remaining unaffected
by any rebalancing triggered by earlier insertions. Figure 10
(lower) illustrates a step-by-step example of candidate page
insertion into unstable tree in Para-ksmC. After each can-
didate page insertion, the unstable tree rebalances through
recoloring (e.g., @) to @) and/or rotation (e.g., @ to 6).
Nonetheless, with our careful design, Para-ksmC can always
identify the correct insertion point for each candidate page
regardless of how the tree structure is changed.

5.3 Para-ksmT: Tree Page Batching

To mitigate B2, Para-ksm introduces speculative page com-
parison for batched tree pages (Para-ksmT). Instead of wait-
ing for each comparison result to select the next tree page to
be compared with candidate page, Para-ksmT speculatively
compares the candidate page with tree pages across the next
M levels and offloads all comparisons in a single BD as shown
in Figure | 1. Specifically, Para-ksmT performs an M-level
inorder traversal starting from a specified node to aggregate
tree pages. @ The inorder traversal ensures that tree pages

o inorder traversal

A= 0000000

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Work descnptor list 1\

> i WD 1 WD 6 }
ﬁBatch descriptor 13 66) (17, 66) (92.66)] !

e ——————————————— e 3
e 0 1
} — cmp_result_array }‘ }
! [« <<% <, >H !
! |

|

]

Figure 11: Search and insertion in vanilla ksm (left) and
Para-ksmT (right). Green and orange arrows point to the
predecessor and successor, respectively.

are visited in ascending order based on their contents, and
their addresses are stored sequentially in a tree_page_array.
Para-ksmT creates a WD list, where each WD includes
the candidate page address and a tree page address from
tree_page_array in sequential order. @ A BD pointing to
the WD list is then created and submitted to DSA to execute
memcmp functions in one offload. Upon completion, €) the
comparison results are retrieved from the completion record
and stored in the cmp_result_array in the same order as the
WDs in the WD list. Since cmp_result_array preserves the
same order as tree_page_array, predecessor (successor) is
easily located in tree_page_array by the index of the last
negative (first positive) result in the cmp_result_array. If
predecessor (successor) is not found, Para-ksmT checks the
left (right) child of the smallest (largest) tree page and inserts
candidate page if a spot is available. If both exist, Para-ksmT
checks the right child of predecessor and/or the left child of
successor and inserts candidate page if the child is absent.
If no spots are available for insertion, Para-ksmT continues
the search on the subtrees until reaching the leaf nodes. Fig-
ure |1 (right) illustrates an example search and insertion in
Para-ksmT. With M set to three, Para-ksmT speculatively
compares the candidate page with seven tree pages in the next
three levels in parallel and offloads seven page comparisons
in a single BD to DSA. In contrast, DSA-ksm requires three
sequential page comparisons and submits three separate WDs
to DSA.

While Para-ksmT leverages batch processing, its memory
deduplication rate remained limited. Our evaluation indicates
that Para-ksmT achieves 9.2% of CPU-ksm ’s deduplication
rate, slightly higher than DSA-ksm. This underwhelming per-
formance is caused by the overhead of unnecessary compar-
isons introduced by speculative page comparisons, resulting
in a significant waste of DSA computation resources. After
traversing M levels, Para-ksmT offloads 2/ — 1 page compar-
isons to DSA while DSA-ksm only offloads M page compar-
isons. That is, only M out of 2™ — 1 comparisons contribute to
identifying duplicate pages. In addition to extra computation
in DSA, speculative traversal also incurs extra data move-

1204 2025 USENIX Annual Technical Conference

USENIX Association

Table 1: Hardware and software configurations.

Hardware Description
CPU Intel® Xeon 8460Y+ CPUs @2.0 GHz, 40 cores
and 2.625 MB LLC per core, Hyper-Threading disabled
Memory 8-Ch. w/ 8 32GB DDR5-4800 DRAM modules

DSA One group with one 64-entry WQ and four PEs
SmartNIC NVIDIA BF-3 [26], PCle 5.0, DDR5-5200

Software
OS (kernel)

Description
Ubuntu 18.04.6 LTS (Linux kernel 6.2.15)

sleep_between_scan =20ms, free_mem_thres = 80
pages_to_scan = [64, 2048] # adjusted by ksmtuned

ksm

Para-ksmC cand_page_batch_size =256

Hypervisor: QEMU-KVM v2.11.1

Virtual machine | 5 o Cloud 22.04, 1 Virtual Core, 6GB memory

ment. Our evaluation shows that when M = 6, this results
in an extra 2% of system DRAM bandwidth consumption.
Moreover, Para-ksmT lacks support for batch processing of
xxhash functions, further restricting its effectiveness com-
pared to Para-ksmC. We consider Para-ksmT a complemen-
tary optimization to Para-ksmC, potentially beneficial in en-
vironments with abundant computational resources to handle
offloaded functions. However, due to the limited availability
of DSA devices in our setup, the following sections focus on
evaluating Para-ksmC.

6 Evaluation

6.1 Evaluation Setup

System Setup. Table | summarizes the hardware and software
configurations used in our experiments. CPU core frequency
is locked at 2.0 GHz, and hyper-threading (HT) is disabled
to ensure consistent performance measurements across runs.
The on-chip DSA is configured with one group consisting of
a 64-entry WQ and four processing engines. Candidate page
batch size in Para-ksmC is set to 256 based on the evaluation
in Section 6.5. We reproduce STYX [14] on NVIDIA BF-3 [26]
for a comparison with Para-ksmC.

Workloads. We evaluate three representative workloads:
Liblinear [6], Graph500 [36], and Redis [30] with Ya-
hoo! Cloud Serving Benchmark (YCSB) [5]. Liblinear is a
widely used library for large-scale linear regression, process-
ing datasets with millions of instances and features. We run
the Support Vector Regression (SVR) from Liblinear on the
SUSY dataset [39]. Graph500 is a high-performance comput-
ing benchmark designed to stress memory subsystems with its
graph generation and traversal. We use Graph500 to generate
a graph of scale 23 and edge factor of 16, and run breadth-first
search (BFS) on it. Redis is a high-performance, in-memory
Key-Value Store (KVS) database widely adopted in real-
world applications requiring low-latency data access. YCSB
is a benchmarking framework to evaluate the performance

of KVS databases, providing four workloads: (a) update
heavy (50% read and 50% update), (b) read heavy (95%
read and 5% update), (c¢) read only (100% read) and (d)
read latest (95% read and 5% insert), with a uniform dis-
tribution for key values.

Methodology. We launch 40 VMs, each assigned one virtual
core (vCPU) and 6 GB RAM, pinned to a dedicated physi-
cal core. For Liblinear and Graph500, each VM runs the
workload independently. For Redis, we organize the 40 VMs
into 10 groups, each comprising 3 VMs as Redis clients and
1 VM as the Redis server to handle the requests. Given the
memory-intensive nature of Redis client operations, we em-
ployed Intel’s Cache Allocation Technology (CAT) [12] to
partition the LLC. Specifically, one cache way is reserved for
each Redis server, while the remaining cache ways are shared
among the clients to minimize interference between client
and server processes. We configure the vanilla ksm running
on CPU (CPU-ksm) and Para-ksmC to achieve comparable
memory savings and provide a fair evaluation of their impact
on the co-running workloads.

6.2 Application Performance

We adopt execution time as the performance metric for
Liblinear and Graph500, and 99™-percentile (p99) latency
for Redis, as user-serving datacenter applications like Redis
must meet strict tail latency requirements [22, 27]. Fig-
ure 12 shows the performance degradation of Liblinear,
Graph500, and Redis on systems that deploy CPU-ksm,
DSA-ksm, STYX, and Para-ksmC, normalized to a system with-
out running ksm (no-ksm). Performance degradation refers to
the increase in execution time for Liblinear and Graph500,
or the increase in p99 latency for Redis, compared to no-ksm.

On average (geometric mean), CPU-ksm incurs 3.3 X perfor-
mance degradation over no-ksm. YCSB workloads on Redis
experience higher degradation, with an average of 3.7 x, while
Liblinear and Graph500 have an average of 2.1x execu-
tion time increase, as the tail latency is more sensitive to
the CPU contention caused by the intensive data-plane func-
tions running on the CPU. In contrast, DSA-ksm, STYX and
Para-ksmC incur 1.3%, 1.4x and 2.1x performance degra-
dation compared to no-ksm, respectively. That is, DSA-ksm,
STYX and Para-ksmC reduce the performance degradation by
2.5%,2.4x and 1.6x compared to CPU-ksm. Both DSA-ksm
and Para-ksmC alleviate CPU contention by offloading data-
plane functions (i.e., memcmp and xxhash) to DSA, freeing
CPU cycles for co-running applications and reducing the
cache pollution as shown in Section 6.3. Para-ksmC exhibits
higher performance degradation than DSA-ksm because it re-
tains intra-group page comparisons on the CPU and incurs
additional overhead (e.g., successor update) during search and
insertion (§5.2).

USENIX Association

2025 USENIX Annual Technical Conference 1205

m CPU-ksm mDSA-ksm

nl.l.l.hl.l.nl.

o N MO
1

|

STYX Para-ksmC

Perf. degradation
norm. no-ksm

Liblinear Graph500 YCSB-a

Read | Update Read
YCSB-b

Update Read Read Insert
YCSB -C YCSB d

GeoMean

Figure 12: Workload performance degradation under CPU-ksm, DSA-ksm, STYX and Para-ksmC, normalized to no-ksm.

6.3 Impact on CPU Resource

To disclose how DSA-ksm and Para-ksmC mitigate the impact
of CPU-ksm on the co-running applications, we investigate
their CPU cycle consumption and LLC miss rates of server
CPU in the system.

6.3.1 CPU Cycle Consumption

Both DSA-ksm and Para-ksmC conserve the server CPU cy-
cles by offloading the CPU-intensive data-plane functions to
DSA. We identify the intervals during which ksm and appli-
cation co-run on a server CPU core and measure the server
CPU cycles consumed by ksm within these intervals. The
total CPU cycles consumed by ksm are summed and divided
by the total server CPU cycles during co-running periods to
calculate the average CPU utilization. The reported values
for YCSB workload are geometric averages across four YCSB
workloads.

Table 2 shows that CPU-ksm consumes significant CPU
cycles when it co-runs with applications, with an average
CPU utilization of 48%, consistent with our observations in
Section 3.1. On average, DSA-ksm and Para-ksmC reduce
the CPU utilization of ksm by 85% and 36%, respectively,
compared to CPU-ksm. STYX achieves a comparable level of
CPU cycle reduction as DSA-ksm, as both approaches succeed
in offloading the memcmp and xxhash from host CPU. The
saved CPU cycles can be used for applications, reducing the
performance degradation caused by the deduplication fea-
ture. Para-ksmC consumes more CPU cycles than DSA-ksm
because it does not offload intra-group memcmp to DSA and
performs extra operations (e.g., hashing on search_results
and successor update) to ensure correct insertion in trees.
Despite the higher CPU cycle consumption than DSA-ksm,

Table 2: CPU utilization of CPU-ksm, DSA-ksm, STYX and
Para-ksmC when they co-run with different workloads.

Para-ksmC delivers more effective and efficient memory
deduplication, as demonstrated in Section 6.4.

6.3.2 LLC Miss Rate

By offloading data-plane functions, DSA-ksm and Para-ksmC
not only conserve CPU cycles but also alleviate cache pollu-
tion. We evaluate the cache pollution by measuring the LLC
miss rates of the server CPU every second while running
CPU-ksm, DSA-ksm, STYX, and Para-ksmC.

Table 3 reports the average LLC miss rates across work-
loads. CPU-ksm leads to 7%—114% higher LLC miss rate than
no-ksm as ksm brings cold pages into CPU caches for com-
parison or checksum calculation when invoked. Liblinear
and Graph500 exhibit smaller LLC miss rate increases as
they are more memory-intensive than Redis. DSA-ksm and
Para-ksmC reduce the LLC miss rate by 28% and 18% on
average compared to CPU-ksm. The reduction is achieved
because DSA reads data directly from host memory to its
processing engines, bypassing the CPU cache hierarchy when
executing the offloaded functions (9 in Figure 6). How-
ever, cache pollution is not fully eliminated in DSA-ksm and
Para-ksmC, as only the two dominant data-plane functions,
memcmp and xxhash, are offloaded, while control-plane func-
tions remain on the CPU.

6.4 Deduplication Performance

After evaluating the impact on application performance and
CPU resources, we focus on the deduplication performance of
the memory deduplication feature in this section. Specifically,
we examine the deduplication effectiveness and efficiency of

Table 3: LLC miss rate of systems (no-ksm, CPU-ksm,
DSA-ksm, STYX and Para-ksmC).

Liblinear Graph500 YCSB GeoMean

Liblinear Graph500 YCSB GeoMean no-ksm 52.5% 8.9% 20.7% 21.3%

CPU-ksm 44.5% 392% 51.7% 48.2% CPU-ksm 56.4% 11.9% 42.5% 30.5%
DSA-ksm 5.8% 52% 8.5% 7.3% DSA-ksm 52.2% 9.0% 22.9% 22.1%
STYX 5.4% 57% 5.4% 5.5% STYX 53.5% 9.5% 21.7% 21.9%
Para-ksmC 37.6% 29.8% 29.8% 31.0% Para-ksmC 52.7% 104% 28.4% 25.0%

1206 2025 USENIX Annual Technical Conference

USENIX Association

CPU-ksm -©DSA-ksm STYX Para-ksmC

N
o

15

(&)}

Mem. savings (GB)
S

0 20 40 60 80 100 120 140 160 180 200
Time (s)

o

Figure 13: Memory saving under CPU-ksm, DSA-ksm, STYX
and Para-ksmC when Liblinear runs.

CPU-ksm, DSA-ksm, and Para-ksmC.

6.4.1 Deduplication Effectiveness

Deduplication effectiveness is measured as memory saving
achieved at a given time while the deduplication feature co-
runs with workloads. Although metrics like the number of
scanned or saved pages can reflect the deduplication progress,
memory savings offers a more direct and comprehensive mea-
sure of deduplication effectiveness, as it captures both the
amount and usefulness of eliminated duplicate pages. We
pick a 200-second window during which the deduplication
feature runs alongside the workload and measure the memory
savings every 20 seconds.

Figure 13 shows the memory saving over the selected pe-
riod using Liblinear as a representative workload, reflect-
ing similar trends observed across other workloads. DSA-ksm
achieves only 12% of CPU-ksm’s memory saving after the
first 20 seconds, with the gap widening over time. The dedu-
plication effectiveness of DSA-ksm is hindered by the long
execution time of DSA-based memcmp and xxhash functions
(Figure 7), resulting from the communication overhead be-
tween CPU core and DSA. STYX exhibits slightly lower dedu-
plication effectiveness than DSA-ksm in the same window,
due to even longer offloading latency that further delays mem-
ory savings. Although both DSA-ksm and STYX eventually
converge toward the memory savings of CPU-ksm, their short-
term effectiveness is constrained by offloading inefficiencies.

The limited deduplication effectiveness of DSA-ksm high-
lights the necessity of exploiting the batching capability of
DSA to amortize the offloading overhead.

Para-ksmC achieves memory savings comparable to
CPU-ksm by redesigning ksm and leveraging the batching ca-
pability of DSA. During the period, Para-ksmC delivers 20%
less memory savings than CPU-ksm after the first 100 sec-
onds and eventually narrows the gap to under 1% by the end.
The significant improvement in deduplication effectiveness of
Para-ksmC over DSA-ksm stems from the redesign of vanilla
ksm that enables memcmp and xxhash to operate on multiple
pages in parallel. This software enhancement allows functions
to be offloaded to DSA in a batch, substantially reducing of-

= DSA-ksm = Para-ksmC

N
[S)

o o -~ -

o B A.AIAIAIA._

Liblinear Graph 500 YCSB-a YCSB-b YCSB-c YCSB-d Geomean

Dedup. efficiency
norm. cpu-ksm

Figure 14: Deduplication efficiency of DSA-ksm and
Para-ksmC normalized to CPU-ksm across workloads.

floading overhead and consequently boosting deduplication
effectiveness.

6.4.2 Deduplication Efficiency

Deduplication efficiency is defined as the memory savings
per 1K CPU cycles consumed by the deduplication features
(i.e., CPU-ksm, DSA-ksm, and Para-ksmC). This metric offers
a more comprehensive evaluation by accounting for both CPU
cycle consumption and memory savings, reflecting how effi-
ciently deduplication features utilize CPU cycles. Similar to
Section 6.4.1, we select a 200-second window during which
the deduplication features and user applications run concur-
rently. The deduplication efficiency is calculated by dividing
the total memory savings by the CPU cycles consumed by the
deduplication features during this period.

Figure 14 presents the deduplication efficiency of DSA-ksm
and Para-ksmC normalized to CPU-ksm across workloads.
DSA-ksm achieves only 5%—-65% deduplication efficiency
compared to CPU-ksm. This reduced efficiency is primarily
because DSA-ksm offloads each function individually in DSA
asynchronous mode. Excessive context switching and CPU-
DSA communication overhead overwhelm the CPU cycle
savings from function offloading, leading to lower overall ef-
ficiency. In contrast, Para-ksmC achieves 1.3x—1.5x higher
deduplication efficiency than CPU-ksm. Its superior efficiency
over DSA-ksm is attributed to the batch processing on DSA,
which consolidates multiple functions into a single BD instead
of processing individual WDs. Batch processing amortizes
the submission overhead across multiple functions, reduces
the frequency of context switches, and minimizes the soft-
ware overhead for checking completion records. Although
Para-ksmC introduces additional operations to vanilla ksm,
the benefits of batch processing outweigh these overheads,
yielding significantly higher efficiency.

6.5 Impact of Batch Size

In this section, we investigate how the deduplication perfor-
mance of Para-ksmC changes under different batch size con-
figurations. We measure the memory saving every 20 seconds
and CPU cycles consumed by Para-ksmC over a 160-second
period during which Para-ksmC co-runs with Graph500.

USENIX Association

2025 USENIX Annual Technical Conference 1207

BS-16-©-BS-32++BS-64=BS-128 #-BS-256--BS-512+BS-1024

=y
o

-
o

Mem. saving (GB)
[&;]

20 40 60 80 100 120 140 160
Time (s)

o
o |

Figure 15: Memory saving achieved by Para-ksmC under
varying batch sizes (BS) while co-running with Graph500.

Figure 15 shows memory saving achieved by Para-ksmC
with batch size ranging from 16 to 1024, where 1024 is the
maximum batch size supported by DSA. As the batch size
doubles from 16 to 256, Para-ksmC achieves 3.0x, 2.2x,
3.9% and 2.1x increases in memory savings over the pre-
ceding batch size. However, beyond the batch size of 256,
the improvements plateau, with only 1.1x and 1.0x higher
memory savings as the batch size doubles from 256 to 512
and 512 to 1024, respectively. Two factors drive this plateau.
First, DSA ’s limited function processing capability becomes
a bottleneck for larger batches, increasing the latency of DSA-
based functions and degrading deduplication performance.
Second, the comparison skewness issue, as shown in Figure 9,
exacerbates the underutilization of BD at large batch sizes,
reducing the overall efficiency of batch processing. We also
calculate the deduplication efficiency of Para-ksmC across
various batch sizes normalized to the efficiency achieved at
a batch size of 16, as shown in Figure 16. The deduplication
efficiency rises steadily up to 2.2x at a batch size of 256,
then slightly declines at larger batch sizes. This decline re-
sults from DSA'’s processing limitations and the effects of
comparison skewness, as discussed above.

7 Related Work

Memory deduplication. Memory deduplication has proven
to be an efficient technique for reducing server memory re-
quirements, particularly in virtualization environments [7, 8,

25
2.0 A
1.5
1.0 -
0.5 A
0.0

Dedup. efficiency
norm. BS=16

16 32 64 128 256 512 1024
Batch size

Figure 16: Deduplication efficiency of Para-ksmC across
different batch sizes, normalized to the efficiency at the batch
size of 16, while co-running with Graph500.

29,31,32]. Numerous software and hardware techniques have
been proposed to enhance the performance and scalability of
ksm, the widely used memory deduplication mechanism.

On the software side, UPM [29] enhances ksm by using
user-provided hints to identify memory regions likely to con-
tain duplicates, thereby improving accuracy and reducing
overhead. XLH [21] extends the memory deduplication pro-
cess by introducing cross-layer I/O-based hints, enabling ear-
lier identification and exploitation of page-sharing opportu-
nities. CMD [4] classifies pages into different groups and
performs comparisons only between pages within the same
group, thereby minimizing futile comparisons. However, these
software techniques still rely on the CPU for data-plane func-
tions, and thus cannot eliminate CPU overhead. Para-ksm
enhances ksm by introducing greater parallelism, offering an
orthogonal approach that can be combined with the aforemen-
tioned software techniques.

On the hardware side, PageForge [34], a pioneering design,
integrates a dedicated hardware component into the memory
controller to execute memcmp and leverages the Error Cor-
recting Code (ECC) engine to perform xxhash functions.
Although PageForge reduces CPU overhead, it requires com-
plex and challenging modifications to memory controller hard-
ware that are infeasible without vendor support. In contrast,
Para-ksm can operate seamlessly on processors with on-chip
DSA accelerators without any hardware modification.
Kernel function offloading. Kernel function offloading has
been popular for its success in alleviating CPU workload
by shifting intensive OS functions and stacks to specialized
hardware accelerators, such as GPUs, FPGAs, SmartNICs
(SNICs), and dedicated processors. PCle-based FPGAs and
SNICs stand out as promising candidates for offloading due
to their flexible programmability. LineFS [16] offloads dis-
tributed system functions, while FlexTOE [33] offloads the
TCP stack to SNICs. Pigasus [41] employs FPGA-based
SNICs to accelerate the intrusion detection and prevention
systems (IDS/IPS), two demanding stateful network functions.
Performance-related kernel functions are offloaded to FPGAs
in a prior work [1] and hXDP [3] offloads Linux’s eXpress
Data Path programs written in eBPF to FPGAs.

Specific to memory deduplication, Catalyst [7] employs
GPUs to accelerate computationally intensive functions from
ksm, while STYX [14] harnesses the capabilities of RDMA-
capable SNICs to mitigate the overhead of ksm. However, as
a non-coherent off-chip device accessed over PCle, STYX
introduces longer offloading latency, requires memory pin-
ning,address translation, and involves substantial kernel mod-
ifications (~1300 LoC). In contrast, Para-ksm utilizes a co-
herent on-chip DSA, achieving lower offloading latency with-
out the need for memory pinning, and integrates more eas-
ily into the OS (~300 LoC). Compared to another recent
work [13], which only offloads memcmp to DSA and uses
the CPU to filter comparisons to offset offloading latency,
Para-ksm achieves lower CPU utilization by offloading both

1208 2025 USENIX Annual Technical Conference

USENIX Association

memcmp and xxhash, and improves deduplication throughput
by redesigning ksm and leveraging the batching capability of
DSA. Recent work [15] on CXL Type-2 devices demonstrates
efficient kernel function offloading with reduced communica-
tion overhead enabled by the cache-coherent CXL intercon-
nect. However, the current implementation of genuine CXL
Type-2 devices relies on a resource-constrained FPGA for
computation, which is less capable than DSA and requires
extra programming effort. Furthermore, Para-ksm’s software
enhancements to ksm are adaptable to existing hardware ac-
celeration techniques for memory deduplication, offering the
potential for higher throughput and improved efficiency.

8 Conclusion

In this paper, we first identified the CPU-intensive functions,
memcmp and xxhash, in the memory deduplication feature,
ksm, and demonstrated the potential of offloading them to the
on-chip accelerator DSA to reduce CPU cycle consumption.
Second, we proposed DSA-ksm, which directly replaces CPU-
based memcmp and xxhash with DSA-based counterparts in
ksm. While DSA-ksm significantly reduced the performance
degradation on the co-running applications incurred by ksm,
it offered notably lower rates of memory deduplication than
ksm due to long offloading latency. We found that DSA’s
batching capability can effectively amortize this latency by
enabling memcmp and xxhash to operate on multiple pages
per offload. Based on this observation, we lastly proposed
Para-ksm, which redesigns ksm to replace its sequential pro-
cessing of memcmp and xxhash on a single page with paral-
lel processing on multiple pages, enabling the Para-ksm to
fully leverage DSA’s batching capability. We showed that
Para-ksm increased the amount of memory deduplication per
CPU cycle by 31-50% compared to ksm while decreasing the
performance degradation of co-running applications incurred
by ksm from 1.6-5.8x to 1.3-2.7x.

References

[1] Pabudi T Abeyrathne, S Devapriya Dewasurendra, and
Dhammika Elkaduwa. Offloading specific performance-
related kernel functions into an fpga. In Proceedings
of the 2021 IEEE 30th International Symposium on
Industrial Electronics (ISIE’21), 2021.

[2] Sean Barker, Timothy Wood, Prashant Shenoy, and
Ramesh Sitaraman. An empirical study of mem-
ory sharing in virtual machines. In Proceedings
of the 2012 USENIX Annual Technical Conference
(ATC’12), 2012.

[3] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro

[4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

(12]

Palumbo, Luca Petrucci, and Roberto Bifulco. hxdp:
Efficient software packet processing on fpga nics.
In Proceedigs of the 14th USENIX Symposium
on Operating Systems Design and Implementation
(NSDI’20), 2020.

Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu
Chen, Haiyang Pan, and Yungang Bao. Cmd:
classification-based memory deduplication through page
access characteristics. In Proceedings of the 10th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE’14), 2014.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the
Ist ACM Symposium on Cloud Computing (SoCC’10),
2010.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. Liblinear: A library for
large linear classification. Journal of machine Learning
research, 2008.

Anshuj Garg, Debadatta Mishra, and Purushottam
Kulkarni. Catalyst: Gpu-assisted rapid memory dedupli-
cation in virtualization environments. In Proceedings
of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments
(VEE’17), 2017.

Yunfei Gu, Yihui Lu, Chentao Wu, Jie Li, and Minyi
Guo. Cksm: An efficient memory deduplication method
for container-based cloud computing systems. In
Proceedings of the 2024 IEEE International Parallel
and Distributed Processing Symposium (IPDPS’24),
2024.

Intel. Intel® FPGA SmartNIC N6000-PL Platform.
https://www.intel.com/content/www/us/en/
products/details/fpga/platforms/smartnic/
n6000-pl-platform.html, accessed in 2024.

Intel Corporation. Intel Data Accelerator Driver. https:
//github.com/intel/idxd, accessed in 2024.

Intel Corporation. Intel Data Streaming Acceler-
ator. https://www.intel.com/content/www/
us/en/products/docs/accelerator-engines/
data-streaming-accelerator.html, accessed in
2024.

Intel Corporation. Introduction to Cache Allocation
Technology in the Intel® Xeon® Processor E5
v4 Family. https://www.intel.com/content/
www/us/en/developer/articles/technical/
introduction-to-cache-allocation-technology.
html, accessed in 2024.

USENIX Association

2025 USENIX Annual Technical Conference 1209

https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic/n6000-pl-platform.html
https://github.com/intel/idxd
https://github.com/intel/idxd
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Houxiang Ji, Minho Kim, Seonmu Oh, Daehoon Kim,
and Nam Sung Kim. Cooperative memory deduplication
with intel data streaming accelerator. IEEE Computer
Architecture Letters, 2025.

Houxiang Ji, Mark Mansi, Yan Sun, Yifan Yuan, Jing-
han Huang, Reese Kuper, Michael M. Swift, and
Nam Sung Kim. STYX: Exploiting SmartNIC capa-
bility to reduce datacenter memory tax. In Proceedings
of the 2023 USENIX Annual Technical Conference
(ATC’23), 2023.

Houxiang Ji, Srikar Vanavasam, Yang Zhou, Qirong Xia,
Jinghan Huang, Yifan Yuan, Ren Wang, Pekon Gupta,
Bhushan Chitlur, Ipoom Jeong, and Nam Sung Kim.
Demystifying a cxl type-2 device: A heterogeneous co-
operative computing perspective. In Proceedings of
the 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO’24), 2024.

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kosti¢, Youngjin Kwon, Simon
Peter, and Emmett Witchel. Linefs: Efficient smart-
nic offload of a distributed file system with pipeline
parallelism. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles
(SOSP’21), 2021.

Reese Kuper, Ipoom Jeong, Yifan Yuan, Ren Wang,
Narayan Ranganathan, Nikhil Rao, Jiayu Hu, Sanjay
Kumar, Philip Lantz, and Nam Sung Kim. A quan-
titative analysis and guidelines of data streaming ac-
celerator in modern intel xeon scalable processors. In
Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’24), 2024.

Taehyung Lee, Sumit Kumar Monga, Changwoo Min,
and Young Ik Eom. Memtis: Efficient memory tiering
with dynamic page classification and page size deter-
mination. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP’23), 2023.

Mellanox Technologies. Mellanox Innova-2 Flex Open
Programmable SmartNIC. https://network.nvidia.
com/files/doc-2020/pb-innova-2-flex.pdf, ac-
cessed in 2024.

Konrad Miller, Fabian Franz, Thorsten Groeninger,
Marc Rittinghaus, Marius Hillenbrand, and Frank
Bellosa. Ksm++: Using i/o-based hints to make
memory-deduplication scanners more efficient. In
Proceedings of the ASPLOS Workshop on Runtime

Environments, Systems, Layering and Virtualized

Environments (RESoLLVE’12), 2012.

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Konrad Miller, Fabian Franz, Marc Rittinghaus, Mar-
ius Hillenbrand, and Frank Bellosa. XLLH: More effec-
tive memory deduplication scanners through cross-layer
hints. In Proceedings of the 2013 USENIX Annual
Technical Conference (ATC’13), 2013.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scal-
ing memcache at facebook. In Proceedigs of the 10th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’13), 2013.

NVIDIA. ConnectX NICs. https://www.nvidia.
com/en-us/networking/ethernet-adapters/,
accessed in 2024.

NVIDIA.
Platform.

NVIDIA BlueField-3 Networking
https://resources.nvidia.com/

en-us-accelerated-networking-resource-library/

datasheet-nvidia-bluefield, accessed in 2024.

NVIDIA. NVIDIA Ethernet SuperNICs.
https://www.nvidia.com/en-us/networking/
products/ethernet/supernic/, accessed in 2024.

NVIDIA Corporation. NVIDIA BlueField-3
DPU. https://www.nvidia.com/content/dam/
en-zz/Solutions/Data-Center/documents/
datasheet-nvidia-bluefield-3-dpu.pdf,
cessed in 2023.

ac-

Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. = Shenango:
Achieving high cpu efficiency for latency-sensitive
datacenter workloads. In Proceedigs of the 16th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19), 2019.

Patel, Dylan and Xie, Myron and Chu, Wega. Going Ver-
tical: Gate All Around, 3D DRAM, 3D NAND - Koku-
sai Electric IPO. https://semianalysis.com/2023/
10/15/going-vertical-gate-all-around-3d/,
accessed in 2024.

Wei Qiu, Marcin Copik, Yun Wang, Alexandru Calo-
toiu, and Torsten Hoefler. User-guided page merg-
ing for memory deduplication in serverless sys-
tems. In Proceedings of the 2023 IEEE International
Conference on Big Data (BigData’23), 2023.

Redis Labs. Redis: The Real-Time Data Platform.
https://redis.io, accessed in 2024.

Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid,
and Aditya Akella. Memory deduplication for server-
less computing with medes. In Proceedings of

1210 2025 USENIX Annual Technical Conference

USENIX Association

https://network.nvidia.com/files/doc-2020/pb-innova-2-flex.pdf
https://network.nvidia.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://www.nvidia.com/en-us/networking/products/ethernet/supernic/
https://www.nvidia.com/en-us/networking/products/ethernet/supernic/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://semianalysis.com/2023/10/15/going-vertical-gate-all-around-3d/
https://semianalysis.com/2023/10/15/going-vertical-gate-all-around-3d/
https://redis.io

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

the 17th European Conference on Computer Systems
(Eurosys’22), 2022.

Prateek Sharma and Purushottam Kulkarni. Singleton:
system-wide page deduplication in virtual environments.
In Proceedings of the 21st international symposium on
High-Performance Parallel and Distributed Computing
(HPDC’12), 2012.

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann,
and Simon Peter. {FlexTOE}: Flexible {TCP} offload
with {Fine-Grained} parallelism. In Proceedings of
the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’22), 2022.

Dimitrios Skarlatos, Nam Sung Kim, and Josep Tor-
rellas. Pageforge: a near-memory content-aware
page-merging architecture. In Proceedings of the
50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’17), 2017.

Stefan Roesch. Kernel Samepage Merging
(KSM) Usage at Meta and future Improvements.
https://lpc.events/event/17/contributions/
1625/attachments/1320/2649/KSM.pdf, accessed
in 2024.

Toyotaro Suzumura, Koji Ueno, Hitoshi Sato, Kat-
suki Fujisawa, and Satoshi Matsuoka. Perfor-
mance characteristics of graph500 on large-scale
distributed environment. In Proceedings of the
2011 IEEE International Symposium on Workload
Characterization IISWC’11), 2011.

The Kernel Development Community. Kernel
Samepage Merging. https://docs.kernel.org/
admin-guide/mm/ksm.html, accessed in 2024.

Johannes Weiner, Niket Agarwal, Dan Schatzberg,
Leon Yang, Hao Wang, Blaise Sanouillet, Bikash
Sharma, Tejun Heo, Mayank Jain, Chungiang Tang,
and Dimitrios Skarlatos. Tmo: Transparent mem-
ory offloading in datacenters. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS’22), 2022.

Daniel Whiteson. SUSY. UCI Machine
Learning Repository, accessed in 2024. DOI:
https://doi.org/10.24432/C54606.

Yifan Yuan, Ren Wang, Narayan Ranganathan, Nikhil
Rao, Sanjay Kumar, Philip Lantz, Vivekananthan San-
jeepan, Jorge Cabrera, Atul Kwatra, Rajesh Sankaran,
Ipoom Jeong, and Nam Sung Kim. Intel accelera-
tors ecosystem: An soc-oriented perspective: Indus-
try product. In Proceedings of the 2024 ACM/IEEE

[41]

51st Annual International Symposium on Computer
Architecture (ISCA’24), 2024.

Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe,
Vyas Sekar, and Justine Sherry. Achieving 100gbps
intrusion prevention on a single server. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20), 2020.

USENIX Association

2025 USENIX Annual Technical Conference 1211

https://lpc.events/event/17/contributions/1625/attachments/1320/2649/KSM.pdf
https://lpc.events/event/17/contributions/1625/attachments/1320/2649/KSM.pdf
https://docs.kernel.org/admin-guide/mm/ksm.html
https://docs.kernel.org/admin-guide/mm/ksm.html

A Artifact Appendix

Abstract

This artifact provides instructions for reproducing the key ex-
perimental results reported in the paper. Specifically, it covers
two key sets of experiments: (1) application performance
degradation on systems running CPU-ksm, DSA-ksm, and
Para-ksmC, normalized to a system without ksm (no-ksm)
(Figure 12); and (2) memory deduplication performance, in-
cluding both deduplication effectiveness (Figure 13) and dedu-
plication efficiency (Figure 14).

Scope

The artifact enables validation of two main claims: (i) of-
floading data-plane functions of ksm to DSA (DSA-ksm and
Para-ksm) significantly reduces performance degradation of
co-running applications; and (ii) after an elaborated redesign
of ksm, Para-ksm leverages DSA’s batching capability by
processing multiple pages per offload, effectively amortizing
offload latency. Compared to vanilla ksm, Para-ksm achieves
comparable memory deduplication effectiveness while signif-
icantly improving deduplication efficiency.

Contents

The artifact includes: (i) a README .md file containing instruc-
tions for building and installing the kernel with Para-ksm sup-
port, and for running the experiments using provided scripts;
(ii) the 1inux-paraksm directory containing the Linux ker-
nel source code modified with the Para-ksm implementation;
and (iii) the scripts directory containing scripts to repro-
duce experimental results and generate the corresponding
figures.

Hosting

The artifact is hosted on GitHub at https://github.

com/ece-fast-lab/ATC-2025-Paraksm.git,onthemain
branch. Users can obtain the artifact by cloning the repository
and checking out the latest commit (98716ac) to reproduce
the results.

Requirements

The experiments require a server with 4"-generation (or
newer) Intel Xeon Scalable Processor equipped with DSA
accelerator. The Para-ksm implementation is based on Linux
kernel version 6.2.15 and has been tested on Ubuntu 18.04.6
LTS. QEMU-KVM version 2.11.1 is used for virtual machine
management, with guest VMs running Ubuntu Cloud 22.04.

©

A.1 Installation

Clone the artifact repository as follows:

$ git clone https://github.com/ece-fast-1lab/ATC
-2025-Paraksm.git

The Linux kernel source code with Para-ksm implementa-
tion can be found in linux-paraksm directory. Follow the
instructions in README . md to build and install the kernel. A
system reboot is required to use the compiled kernel.

A.2 Experiment workflow

After installing the kernel, experiments can be executed as
follows:

$ ed /scripts/figl2-14/
$ bash run.sh

The run. sh script executes all benchmarks by default; spe-
cific experiments can be selected by commenting or uncom-
menting lines within the script. All generated results will be
automatically saved. The figures (Figure 12, 13 and 14) can
be plotted and saved as PNG files by running plot.sh in
the /scripts/figl2-14/ directory. Additional details are
provided in the README . md file in the root directory.

1212 2025 USENIX Annual Technical Conference

USENIX Association

https://github.com/ece-fast-lab/ATC-2025-Paraksm.git
https://github.com/ece-fast-lab/ATC-2025-Paraksm.git

	Introduction
	Background
	Memory Deduplication
	Data Streaming Accelerator

	Opportunity in Offloading ksm to DSA
	CPU-intensive Functions of ksm
	Comparison between CPU and DSA: CPU Cycle Consumption

	DSA-ksm: CPU-DSA Cooperative ksm
	Para-ksm
	Sequential Processing in ksm
	Para-ksmC: Candidate Page Batching
	Search in Para-ksmC
	Insertion in Para-ksmC

	Para-ksmT: Tree Page Batching

	Evaluation
	Evaluation Setup
	Application Performance
	Impact on CPU Resource
	CPU Cycle Consumption
	LLC Miss Rate

	Deduplication Performance
	Deduplication Effectiveness
	Deduplication Efficiency

	Impact of Batch Size

	Related Work
	Conclusion
	Artifact Appendix
	Installation
	Experiment workflow

