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A Holographic Sensor-Integrated Deep Learning Framework
for Noninvasive Assessment of Stored Red Blood Cell
Quality

Seonghwan Park, Hyunbin An, Abdur Rehman, and Inkyu Moon*

Prolonged storage of red blood cells (RBCs) induces morphological
degradation that can compromise transfusion efficacy. Traditional quality
assessment methods are often labor-intensive and time-consuming, limiting
their utility in real-time settings. Although deep learning has been applied to
RBC imaging, most approaches require large datasets and complex
architectures, making them impractical for efficient deployment. This study
introduces a holographic sensor-integrated deep learning framework for
noninvasive RBC quality assessment using small datasets. A diffusion model
is employed to synthetically generate phase images and segmentation masks,
augmenting limited data. Self-supervised learning with pre-trained models
further enhances classification performance while maintaining a streamlined
model architecture. Compared to conventional segmentation methods, the
proposed framework achieves higher accuracy and significantly faster
inference. It also enables reliable detection of storage-induced morphological
changes, providing proportional indicators of transfusion viability.
Experimental results validate its effectiveness as a practical tool for real-time,
sensor-driven monitoring of RBC quality.

1. Introduction

Red blood cells (RBCs) transport oxygen from the lungs to tis-
sues and carbon dioxide from tissues to the lungs, thereby play-
ing a crucial role in human physiology.[1] This essential func-
tion supports metabolism and energy production throughout the
body, making the health and functionality of RBCs vital to over-
all health. Healthy RBCs are biconcave disks, which property al-
lows them to deform as they pass through narrow capillaries and
optimize their oxygen-carrying capacity. However, storage can
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compromise the shape and structural in-
tegrity of RBCs.[2–5] RBCs can be stored
for up to 49 days, as is well-documented;
but as storage time increases, signifi-
cant morphological changes can occur.
These changes include membrane loss,
shape transformation to a more spher-
ical form, and reduced deformability,
all of which can impair the ability of
RBCs to effectively perform their essen-
tial functions. Degradation of RBC mor-
phology over time during storage is a
critical factor to consider in transfusion
medicine. Transfusing RBCs with abnor-
mal shapes can lead to reduced oxygen
delivery, increased hemolysis, and other
complications. Therefore, research into
technologies that can quickly and ac-
curately assess RBC morphology is es-
sential to improve transfusion outcomes
and ensure the efficacy and safety of
blood transfusions. However, RBC obser-
vation via conventional imaging systems
such as bright-field microscopy cannot

provide important biophysical cellular parameters and therefore
does not offer sufficient detail to reliably distinguish between dif-
ferent RBC morphologies.[6,7]

Digital holographic sensing and imaging systems has emerged
as a powerful imaging technique that enables quantitative, label-
free analysis of transparent biological samples. Its ability to
capture optical phase information has led to widespread appli-
cations in the morphological analysis of red blood cells,[8–11]

cancer cells,[12,13] and cardiomyocytes.[14,15] Among the various
holographic imaging techniques, digital in-line holographic mi-
croscopy (DIHM) has been employed for RBC classification by
extracting geometric and optical features such as real and virtual
focal lengths, projected area, and perimeter.[16,17] While DIHM
offers advantages in terms of system simplicity and compact-
ness, it inherently suffers from twin-image artifacts due to the
inline configuration of the reference and object beams. These ar-
tifacts degrade the accuracy of phase reconstruction and typically
require computationally demanding post-processing, limiting its
suitability for high-throughput or real-time applications.
As an alternative configuration, off-axis digital holographic

microscopy (DHM) has been developed, in which the reference
and object beams are spatially separated. This spatial separation
enables the resolution of twin-image artifacts in the frequency
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domain, allowing for direct and artifact-free phase recon-
struction. In off-axis DHM, holograms are recorded as spatial
interference patterns generated by the coherent interaction of
the reference and object waves transmitted through biolog-
ical specimens.[18,19] These holograms are then numerically
propagated using scalar diffraction theory under the Fresnel
approximation, followed by phase retrieval to produce quanti-
tative phase images (QPIs). These QPIs provide high-contrast,
high-resolution optical thickness maps that support detailed
morphological and biophysical analysis of transparent samples
such as RBCs.
Deep learning has emerged as a powerful tool in recent years,

bringing significant advancements in fields such as computer vi-
sion. Recognizing this potential, many researchers have applied
deep learning models to the phase images of biological sam-
ples obtained from digital holography.[13,20–22] O’Connor et al.[23]

demonstrated a successful deep learning strategy for cell identi-
fication and disease diagnosis that used spatio-temporal cell in-
formation recorded by a compact digital holographic microscopy
system, while O’Connor et al.[24] demonstrated the use of a digital
holographic deep learning system for rapid COVID−19 screen-
ing that used a compact and field-portable microscope to ana-
lyze the spatiotemporal behavior of red blood cells. Kim et al.[25]

introduced a GAN-based approach for the phenotypic assess-
ment of red blood cell that used digital holographic microscopy
to achieve high classification accuracy and efficient segmenta-
tion. Kim et al.[26] proposed an AI-based digital holographic mi-
croscopy technique that accurately measured the 3D position
and orientation of red blood cells to enhance the analysis of
their dynamic behavior. However, previous studies have gener-
ally improved the performance of deep learning models by in-
creasing the amount of data, or employing complex architectures
for training. But in the fields of medicine and biology, it is ex-
tremely challenging to obtain large-scale datasets. Additionally,
whilemaking themodel deeper andmore complex can boost per-
formance, the use of limited data comes with the risk of overfit-
ting, and can also slow down the speed at which image results are
produced.
We introduce a holographic sensor-integrated deep learning

framework for generating RBC segmentation masks that classify
four distinct cell types, utilizing phase images captured via digi-
tal holographic sensing (Figure 1a). We suggest an approach that
uses a small amount of data to achieve high accuracy and rapid
analysis. The model construction is based on two approaches
(Figure 1b): data augmentation using a diffusion model, and
model pretraining based on self-supervised learning. Diffusion
models are generative AI techniques that progressively remove
noise to reconstruct target images.[27,28] Compared to previously
widely used generative adversarial networks (GANs),[29] diffusion
models demonstrate superior accuracy. Self-supervised learning
(SSL) provides a powerful technique that allows a model to learn
from unlabeled data, thereby reducing dependence on annotated
datasets.[30] SSL involves pretraining a model with unlabeled
data, and fine-tuning it with a small amount of labeled data to per-
form such tasks as classification, segmentation, or object detec-
tion. By leveraging these twomethods, it becomes unnecessary to
invest additional time and resources in acquiring larger datasets,
or to modify the structure of the segmentation model to increase
its complexity. Consequently, the model achieves high accuracy

evenwith limited data, whilemaintaining amore straightforward
structure that facilitates faster analysis.
We obtained phase images of red blood cells classified into

four types using digital holographic microscopy. The RBCs in the
phase images were manually classified into these four types to
create segmentation masks. A diffusion model was used to gen-
erate images that resembled the acquired RBC phase images and
their corresponding segmentation masks. Additionally, a pre-
trained model based on ResUnet was employed as the backbone,
leveraging self-supervised learning techniques, and training on
a well-known blood cell dataset. Through pretraining based on
self-supervised learning, and data augmentation using diffusion
models, our proposed method improved model performance.
In consequence, it outperformed other segmentation models in
terms of accuracy, while also delivering faster performance. Fur-
thermore, we evaluated the phenotype of RBC storage lesions,
observing morphological changes in RBCs over the storage pe-
riod (Figure 1c). This approach demonstrates the feasibility of
training with a limited dataset while using a less complex model
structure, compared to conventional modeling techniques. This
represents an ideal training approach for real-time red blood cell
storage evaluation analysis.
The contributions of the proposed scheme can be summarized

as follows:

1) We propose a holographic sensor-integrated deep learning
framework that achieves high accuracy and fast analysis us-
ing small amounts of data, eliminating the need for larger
datasets or complex model modifications.

2) We use diffusion models to generate RBC phase images and
segmentation masks to significantly improve data diversity,
and address challenges associated with small datasets.

3) Self-supervised learning on large unlabeled datasets allows
the development of lightweight yet highly effective segmen-
tation models, which enable effective fine-tuning on small
datasets.

4) Compared to existing models, the proposed method achieves
superior segmentation accuracy and faster processing times,
demonstrating its suitability for real-time applications in
transfusion medicine.

5) This holographic sensing-driven approach enables the sen-
sitive detection and quantitative evaluation of morphological
changes in RBCs over storage periods, thereby ensuring cel-
lular integrity and advancing transfusion safety.

6) To the best of our knowledge, this study is the first at-
tempt to simultaneously employ data augmentation based
on diffusion model training, and pretraining models based
on self-supervised learning, to develop a high-performance
and efficient model using a small amount of red blood cell
data.

2. Diffusion Model for Data Augmentation

The diffusion model is a generative model that progressively
transforms simple noise into complex data distributions through
iterative steps and consists of a forward process and a reverse pro-
cess. The forward process gradually adds Gaussian noise to the
data in a series of time steps, effectively transforming the data
into a standard normal distribution. The noisy images generated
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Figure 1. Overview of the proposed method for red blood cell segmentation and storage assessment. a) RBC segmentation process: Digital holography
is used to capture RBC phase images, which are segmented intomasks using a ResUnetmodel to identify different RBC types. b) Small data-driven neural
network training: To address the challenges of limited datasets, two solutions are employed: data augmentation using a diffusion model to generate
synthetic RBC phase images and segmentation masks, and pretraining the ResUnet model on a large blood cell dataset using self-supervised learning.
c) RBC storage assessment: RBC phase images at different storage durations are processed by the ResUnet model to generate segmentation masks,
enabling calculation of RBC type ratios (discocytes, echinocytes, spherocytes, and stomatocytes) and their trends over time.

by the forward process are used to train the model in the reverse
process. The reverse process aims to denoise the data step-by-
step, recovering the original data distribution from pure noise.
In the reverse process, the model is trained to iteratively denoise
the noisy data by learning the mapping between the noisy and
clean data distributions, thus enabling efficient sampling with
competitive quality and diversity. Our goal is to enhance segmen-
tation performance through data augmentation by using diffu-
sion models to generate a large number of similar samples from

a limited dataset. Figure 2 shows the three-step process that we
employ to generate new datasets.

2.1. Training a Diffusion Model to Generate RBC Phase Images

Figure 2a aims to train a diffusionmodel that generates fake RBC
phase images that are similar to real RBC phase images, using
a denoising diffusion GAN model that integrates the diffusion
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Figure 2. Overview of the data augmentation technique using diffusion model. This consists of a three-step process: a) training a diffusion model
to generate RBC phase images, b) training a diffusion model to generate RBC segmentation masks corresponding to the RBC phase images, and c)
generating new data pairs using the two trained diffusionmodels. The diffusionmodel consists of a generator and a discriminator based on the denoising
diffusion GAN. Each image is 256 × 256 pixels, corresponding to a physical size of ≈36.02 μm × 36.02 μm.

process with the GAN framework to improve the quality of image
generation. This includes two processes in model training: the
forward process, and the backward process.
The forward process gradually adds Gaussian noise to the RBC

phase image over time steps from (0 to T):

pt
noise 𝜀 add
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← p (1)

where p is an original phase image and pt is a phase image with
noise added to p by t timesteps. The reverse process uses the RBC
phase image pt with added noise from the forward process as in-
put. This reverse process uses a trainable model GP to generate
denoised image p̃ from the noisy RBC phase image pt. The gener-
ated denoised image p̃, together with the input noisy image pt, un-
dergoes posterior sampling to produce image p̂t−1 with one step
of noise removed:

p̃ = GP

(
pt, t

)
(2)

p̂t−1
Posterior Sampling
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

(
pt, p̃, 𝜀

)
(3)

The RBC phase image generator GP is trained with an adver-
sarial loss where at each timestep, the discriminator DP differen-
tiates between real and generated RBC phase images:

Ladv−P = 𝔼
[
− log

(
DP

(
t, pt, p̂t−1

))]
(4)

The trained model can be used to generate various types of
RBC phase images from random noise. Section SA1 (Support-
ing Information) describes the detailed calculation of training a
diffusion model to generate RBC phase images.

2.2. Training a Diffusion Model to Generate RBC Segmentation
Masks from RBC Phase Images

Figure 2b aims to train a diffusion model to generate segmen-
tation masks that correspond to real RBC phase images using
manually created segmentation masks paired with the real RBC
phase images. A denoising diffusion GAN model is used in the
same way as the process of training the model to generate the
previous phase image, while themodel training includes forward
and backward processes.
The forward process gradually adds Gaussian noise to the RBC

segmentation mask image over the time steps (0 to T).

mt

noise 𝜀 add
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←← m (5)

wherem is an original phase image andmt is a phase image with
noise added tom by t timesteps. In the reverse process, the train-
able model GM takes two concatenated images as input: one is
the noisy RBC segmentation mask mt from the forward process,
while the other is the RBC phase image p corresponding to the
original RBC segmentation mask m. The model GM generates a
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denoised RBC segmentation mask m̃ based on these inputs. The
generated denoised mask m̃ undergoes posterior sampling along
with the input noisy mask mt, to produce a mask m̂t−1 with one
step of noise removed:

m̃ = GM

(
mt, p, t

)
(6)

m̂t−1
Posterior Sampling
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←

(
mt, m̃, 𝜀

)
(7)

The RBC segmentation mask generator GM is trained using
two losses. One is an adversarial loss Ladv −M, where the discrim-
inator DM learns to distinguish real segmentation masks from
generated segmentation masks. The other is an L1 loss LL1 −M,
where the segmentation mask generated by GM is trained to be
the segmentation mask corresponding to the p used in the input.

Ladv−M = 𝔼
[
− log

(
DM

(
t, mt, m̂t−1

))]
(8)

LL1−M = 𝔼
[‖‖m0 − m̃‖‖1] (9)

Using the RBC phase image and random noise as inputs,
the trained model enables the generation of RBC segmentation
masks that correspond to RBC phase images. Section SA2 (Sup-
porting Information) describes the detailed calculation of train-
ing a diffusionmodel to generate RBC segmentationmasks from
RBC phase images.

2.3. Generating New Data Pairs Using Trained Diffusion Models

As the last step (Figure 2c), we use the two trainedmodels to gen-
erate new data pairs. First, the diffusionmodel trained in the first
step is used to generate an RBC phase image from the random
noise. RBC phase images are generated by gradually removing
noise from timestep T to 0. During this process, phase images are
selected that contain various types of RBCs to enhance the per-
formance of the final model. Next, the diffusion model trained in
the second step is used to generate the RBC segmentation mask
map corresponding to the previously generated RBC phase im-
age. This process is also performed by gradually removing noise
from timestep T to 0. These generated image pairs (p̂0, m̂0) are
then added to the existing dataset.

3. Self-Supervised Learning for the Pretrained
Model

Self-supervised learning (SSL) harnesses large-scale unlabeled
datasets by formulating auxiliary tasks, commonly referred to
as pretext tasks, to enable models to learn meaningful repre-
sentations without extensive reliance on labeled data. The pri-
mary objective of SSL is to facilitate the transfer of the trained
model to downstream tasks, particularly in scenarios where la-
beled datasets are scarce.
In line with this goal, we adopted the Blood Cell Dataset[31] for

the pretraining phase of SSL. This dataset contains 17092 images
and is widely used in biomedical image analysis due to its high
resolution and diversity. Although it was primarily constructed

for white blood cell (WBC) classification, the dataset also includes
a substantial number of red blood cells (RBCs) appearing in the
background of the images. Therefore, the dataset is not WBC-
exclusive but includes both WBC and RBC structures, making it
relevant to our target domain.
Furthermore, it is important to note that SSL does not require

the pretraining dataset to be strictly task-specific. Rather, it ben-
efits from a large volume of visually similar biomedical images,
which allows the model to learn generalizable low-level features
such as edge contours, cell morphology, and spatial distribution
patterns. In our case, the Blood Cell Dataset provided sufficient
morphological variability and image volume to train a robust fea-
ture extractor through SSL. These learned representations were
subsequently fine-tuned using our limited labeled RBCphase im-
age dataset.
Two key learning paradigms were employed in our pretext

task: momentum contrastive learning,[32] to train the encoder
model to extract deep features from the cell images; and recon-
struction learning, to train the decoder model to reconstruct the
image. Figure 3 provides an overview of the proposed SSLmodel.
Prior to inputting the white blood cell image into the model,
the image is randomly cropped into two regions, c and c′. These
cropped images are then passed through the encoder module of
the model to extract the corresponding feature vectors, z and z′.
To update the encoder weights, contrastive loss is used to com-
pare the feature vectors.[33] This contrastive learning framework
employs the Momentum Contrast approach,[34] where the fea-
tures of different images that are stored in themomentum queue
are maintained, while only features of the same images are up-
dated in each training batch. The contrastive loss is expressed as
follows:

Lcontrastive = − log
exp

(
sim(zi,z′ i)

𝜏

)

exp
(

sim(zi,z′ i)
𝜏

)
+

k∑
j=1
exp

(
sim(zi,z′ j)

𝜏

) (10)

where, 𝜏 is a temperature hyperparameter,[35] while the sim func-
tion represents the dot product between two vectors. zi repre-
sents the features extracted from the encoder that processes the
randomly cropped image region c, and z′i represents the feature
vector extracted from the momentum encoder that processes an-
other crop c′ from the same image, as shown in Figure 3. The
momentum encoder shares the same architecture as the main
encoder but is updated via a moving average of the main en-
coder’s weights for stability. These two vectors (zi and z′i ) form
a positive pair. In contrast, z′j represents feature vectors extracted
from other images, also processed through the momentum en-
coder, and stored in the feature queue as negative samples. The
number of such negative samples in the queue is denoted as k.
The contrastive loss is designed to maximize the similarity be-
tween the positive pair (zi and z

′
i ), while minimizing the similar-

ity between zi and each negative sample z′j . This training strategy
encourages the model to learn more discriminative and general-
izable representations across a diverse set of image instances.
To train the decoder of the SSL model, the feature vectors z

and z′ extracted from the encoders are passed to the decoder to
reconstruct the original cropped images. The reconstruction per-
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Figure 3. The architecture for self-supervised segmentation pretraining. The encoder is trained using contrastive learning, while the decoder simultane-
ously uses reconstruction loss. Both encoder and decoder are trained to be augmentation-invariant. These pretrained model weights are initialized for
the segmentation task.

formance of the decoder is evaluated using mean squared error
as the reconstruction loss:

Lrec =
1
n

n∑
i=1

(c − c̃)2 +
(
c′ − c̃′

)2
(11)

where, c and c′ are the original cropped images, and c̃ and c̃′ are
the images reconstructed by the decoder of the SSLmodel. By in-
tegrating both contrastive loss and reconstruction loss, the overall
loss function for our SSL network is defined as:

Lssl = Lcontrastive + Lrec (12)

For the downstream task, pretrained weights of models are
transferred to segment the RBC images.

4. ResUnet Training and Inference

Our proposed architecture replaces the standard ResNet50[36] en-
coder within the U−Net,[37] and establishes skip connections to
the decoder module. Compared to the original U−Net, this modi-
fiedmodel, ResUnet, enhances feature extraction, while also pro-
viding greater flexibility when transferring the model to down-
stream tasks. Figure 4 shows the process of training and infer-
ence from small data using ResUnet. The ResUnet model was
first pretrained using self-supervised learning with a white blood
cell dataset, following the strategy described in Section 3. This
approach enabled the model to learn meaningful representa-
tions from unlabeled data prior to downstream fine-tuning. The
pretrained ResUnet model was then fine-tuned using the orig-
inal RBC phase images and manually annotated segmentation

masks, combined with newly generated RBC phase images and
their corresponding segmentation masks synthesized through
the diffusion-based data augmentation method detailed in Sec-
tion 2.3. This augmentation process involved sequentially ap-
plying two denoising diffusion GANs: one to generate realistic
RBC phase images from random noise, and another to gener-
ate matching segmentation masks conditioned on those images.
To train the ResUnet model, LCE − Dice was computed, which com-
bines cross entropy loss and dice loss. After training the ResUnet
model to perform the RBC segmentation task, the inference pro-
cess was conducted using an unseen dataset. During inference,
only the trained ResUnet was utilized, without involving pro-
cesses such as the diffusion model or self-supervised learning.
As a result, the RBC segmentation task could be quickly and ef-
ficiently performed. The generated masks were merged to fit the
entire size to obtain the final output.

5. Results and Discussion

5.1. Generated Phase Image by Diffusion Model

RBC phase images were generated using the diffusion model
with various random noises, and then segmentation masks cor-
responding to the generated RBC phase images were generated.
Figure 5 shows the samples generated by training the diffusion
model on the data that was actually obtained. The following ob-
servations may be made: First, the generated RBC samples look
realistic; the patterns and textures of the generated RBCmorphol-
ogy are similar to those of the real samples. Second, the gener-
ated RBC morphology is very diverse; this diversity plays a criti-
cal role in mitigating the imbalance observed in the real dataset,

Adv. Sensor Res. 2025, 4, e00073 e00073 (6 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 4. The process of training and inference from small data using ResUnet. ResUnet is trained to generate RBC segmentationmasks from RBC phase
images using data augmented with diffusion models and a pre-trained model using self-supervised learning. During training, 256 × 256 pixel image
patches (corresponding to 36.02 μm × 36.02 μm) are used as input. During inference, the full-size RBC phase image (900 × 900 pixels, corresponding
to 129.68 μm × 129.68 μm) is divided into non-overlapping 256 × 256 patches, and segmentation masks are predicted for each patch. The individual
patch-level masks are then merged to reconstruct the final output mask for the entire image.

Figure 5. RBC phase image and mask image generated from trained diffusion model. Each image is 256 × 256 pixels, corresponding to a physical size
of ≈36.02 μm × 36.02 μm. a) Generated phase image. b) Generated background mask. c) Generated discocyte mask. d) Generated spherocyte mask. (e)
Generated echinocyte mask. f) Generated stomatocyte mask. h) Mask image colored by RBC type (red, discocyte; blue, spherocyte; green, echinocyte;
yellow, stomatocyte).

Adv. Sensor Res. 2025, 4, e00073 e00073 (7 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 6. Representative segmentation results from the proposed model under different training settings. a) Input RBC phase image. b) Manually
annotated ground truth. c) Result of ResUnet trained without pretraining or augmentation. d) Result after applying data augmentation using a diffusion
model. e) Result after applying self-supervised pretraining. f) Result after applying both self-supervised pretraining and data augmentation. All models
were evaluated on a test set of 40 images (n = 40).

where discocytes are disproportionately represented compared to
spherocytes and stomatocytes. To specifically address this issue,
we adopted a targeted sampling strategy during the data augmen-
tation process.
From 5000 generated phase-mask image pairs, we manually

selected 500 samples that included a balanced and diverse repre-
sentation of all four RBC types, with particular attention given to
increasing the presence of underrepresented cell types such as
spherocytes and stomatocytes. These selected samples were then
augmented through rotation-based transformations to produce
a final dataset of 2000 images. This process not only increased
the overall quantity of training data, but also enhanced the mor-
phological diversity required for robust learning across all RBC
categories.

Further, the generated samples retained structural consis-
tency with real-world RBCs while introducing sufficient varia-
tion, improving the model’s ability to generalize. The segmen-
tation masks corresponding to these synthetic phase images
were also generated with high accuracy, ensuring reliable ground
truth labels for training. This class-balanced data augmentation
approach ultimately improved model performance, as demon-
strated in later evaluation results.

5.2. Segmentation Results of the Proposed Model

Figure 6 illustrates the impact of incorporating data augmenta-
tion and self-supervised learning on the performance of ResUnet.

Adv. Sensor Res. 2025, 4, e00073 e00073 (8 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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Table 1.Quantitative performance analysis of the dice score in multi-class
RBC segmentation. Each model was evaluated on 40 test images (n = 40).

Method Dice Score

Discocyte Spherocyte Echinocyte Stomatocyte Overall

U−Net 0.7548 0.9654 0.9297 0.9385 0.8971

Deeplab v3+ 0.651 0.8914 0.7661 0.8707 0.7948

FCN 0.5348 0.9543 0.9332 0.6425 0.7662

PSPNet 0.9251 0.9802 0.9402 0.9748 0.955

GAN +Watershed 0.9548 0.9575 0.9466 0.9064 0.9413

Denoising diffusion GAN 0.9531 0.9801 0.9626 0.9776 0.9683

ResUnet (backbone) 0.8762 0.9646 0.9467 0.9295 0.9292

ResUnet + DA 0.891 0.9653 0.9056 0.9813 0.9358

ResUnet + SSL 0.8794 0.9603 0.9536 0.9589 0.9381

ResUnet + DA&SSL 0.948 0.9879 0.981 0.9839 0.9752

When ResUnet was trained using only the acquired data, there
were several instances where a single RBC was split into mul-
tiple types or misclassified, as can be seen in the red section
of sample 5 in Figure 6. Additionally, non-RBC areas, such as
the blue section of sample 4 in Figure 6, were incorrectly iden-
tified as the RBC. When data augmentation based on the diffu-
sion model was employed, the results improved, with segmen-
tation and classification being more accurate, compared to us-
ing only the acquired data. However, issues, such as incorrect
classification and segmentation into multiple types, persisted.
Similar results were observed when using a pre-trained ResUnet
model with self-supervised learning. But when data augmenta-
tion and self-supervised learning were simultaneously applied,
these problems were nearly eliminated. Non-RBC areas were ac-
curately identified as background, and the RBC classification re-
sults closely matched the labels. This demonstrates that applying
the two processes together can dramatically improve model per-
formance to achieve more accurate segmentation and classifica-
tion.
Furthermore, although the generated dataset was constructed

using a sampling strategy that intentionally minimized overlap-
ping cells through controlled spatial dispersion, there were still
cases in which multiple RBCs appeared in close proximity. Even
in such challenging scenarios, the model was able to correctly
segment and classify adjacent RBCs without confusion, indicat-
ing its robustness to partial contact or touching boundaries. This
suggests that the proposed method is not only effective under
ideal, isolated conditions, but also generalizes well to realistic
imaging situationswhere cellsmay be closely packed but not fully
overlapping.

5.3. Comparison Results with Evaluation Metrics

The results were compared across various model architectures,
including U−Net,[37] Deeplab v3+,[38] FCN,[39] PSPNet,[40] GAN
+Watershed[25] and Denoising diffusion GAN.[41] Tables 1 and 2
present the segmentation evaluation metrics for each model.
Metrics were calculated per type, with the “Overall” metric rep-
resenting the average. ResUnet serves as the backbone model.
ResUnet + DA uses a dataset created through a diffusion-based

Table 2.Quantitative performance analysis of the Aggregated Jaccard Index
in multi-class RBC segmentation. Each model was evaluated on 40 test
images (n = 40).

Method Aggregated Jaccard Index

Discocyte Spherocyte Echinocyte Stomatocyte Overall

U−Net 0.6433 0.9399 0.8784 0.8968 0.8396

Deeplab v3+ 0.5181 0.844 0.6019 0.8127 0.6941

FCN 0.4499 0.9238 0.8831 0.6344 0.7228

PSPNet 0.8419 0.9539 0.8724 0.9404 0.9021

GAN +Watershed 0.8932 0.9169 0.8915 0.8288 0.8826

Denoising diffusion GAN 0.9049 0.9628 0.9305 0.9577 0.9389

ResUnet (backbone) 0.7872 0.9394 0.9044 0.8931 0.881

ResUnet + DA 0.8517 0.9476 0.8772 0.9648 0.9103

ResUnet + SSL 0.7932 0.9321 0.9154 0.9255 0.8968

ResUnet + DA&SSL 0.9214 0.977 0.9636 0.9699 0.9579

data augmentation process. ResUnet + SSL involves fine-tuning
the ResUnetmodel trained with self-supervised learning for RBC
segmentation. ResUnet + SSL & DA combines both processes.
The denoising diffusion GAN was the model used for data gen-
eration.
In the case of our proposed backbone, ResUnet, when trained

without DA or SSL, demonstrated respectable performance,
though with slightly lower results for discocytes and stomato-
cytes. This was interpreted as an increase in error, because al-
though these two sample types are visually similar, they con-
tain significantly more discocytes and significantly fewer stom-
atocytes. Notably, the relatively lower performance for discocytes
is a common issue observed across all models. However, when
DA or SSL is applied to ResUnet, the performance for both disco-
cytes and stomatocytes improves. With the application of DA, the
improvement is more pronounced, as the diffusion model-based
DA selectively includes various types in the generated data, facili-
tating more effective learning on the previously limited stomato-
cyte data, thus significantly enhancing stomatocyte performance.
ResUnet with both DA and SSL applied shows a substantial per-
formance boost, achieving an overall dice score of 0.97, with AJI
scores exceeding 0.9 for all types. This demonstrates that com-
bining DA and SSL leads to a more refined model.
Among the models compared, U−Net, Deeplab v3+, and FCN

showed dice scores below 0.9 and AJI scores below 0.85, indicat-
ing suboptimal performance. GAN + watershed model showed
dice scores over 0.9 but AJI scores below 0.9. However, both PSP-
Net and Denoising diffusion GAN performed exceptionally well,
with dice scores and AJI scores exceeding 0.9. In particular, apart
from our proposed ResUnet + DA&SSL, Denoising Diffusion
GANwas the onlymodel to achieve AJI scores above 0.9 across all
types. Therefore, in terms of accuracy, Denoising diffusion GAN
can also be considered a highly suitable model.
Table 3 presents an analysis of whether themodels can be used

in real-time applications by quantifying the time required to test
10 images, the number of model parameters, and the computa-
tional complexity. Since DA and SSL do not impact the testing en-
vironment, the values for ResUnet with these enhancements re-
main the same as the base ResUnet model. Simple models such

Adv. Sensor Res. 2025, 4, e00073 e00073 (9 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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Table 3. Quantitative computation performance analysis in multi-class
RBC segmentation. The time column indicates the total time required to
process 10 test images (n = 10) during inference. (s: seconds, G: 109

MACs).

Method Time (s) Parameters MACs (G)

U−Net 1.4517 54 424 581 18.42

Deeplab v3+ 1.7595 39 757 733 9.28

FCN 1.1224 18 643 845 25.51

PSPNet 2.7531 65 700 293 65.72

GAN +Watershed 1.6574 13 043 269 81.00

Denoising diffusion GAN 24.9052 135 891 461 279.03

ResUnet (backbone) 1.7472 73 688 197 50.17

ResUnet + DA 1.7472 73 688 197 50.17

ResUnet + SSL 1.7472 73 688 197 50.17

ResUnet + DA&SSL 1.7472 73 688 197 50.17

as U-Net, DeepLab v3+, FCN, and GAN + watershed have rela-
tively fewer parameters and require less time for testing. How-
ever, this simplicity often comes at the cost of reduced perfor-
mance. The most noteworthy result is the Denoising Diffusion
GAN model. Despite achieving high performance on segmenta-
tion evaluation metrics with real data, its testing time is nearly
15 times longer than that of the other models. This extended
time is due to the diffusion model requiring step-by-step sam-
pling from noise, making it challenging to use in real-time appli-
cations. PSPNet also showed good performance in the accuracy
evaluation, but took more than 1s longer than the other simple
models. In contrast, ResUnet demonstrates relatively short test-
ing times, fewer parameters, and reduced computational load.
Despite its simple structure, the ResUnet model with DA and
SSL offers high performance, and can segment in a short amount
of time. Therefore, the proposed model is suitable for real-time
applications; and due to its minimal parameters and computa-
tional requirements, can be deployed on lower-performance sys-
tems.

5.4. RBCs Storage Assessment by the Proposed Model

We used the dataset reported in Ref. [8] to evaluate the model
performance in observing RBCmorphology changes due to RBC
storage lesions. This dataset contains RBC samples stored for dif-
ferent periods of (8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57).
There are 6 images for each storage period, for a total of 66 im-
ages. Figure 7 shows the predictions of the trained model for
the RBC dataset, which consists of RBCs obtained from differ-
ent storage periods. As the storage period increased, we observed
changes in cell types, with discocytes being the dominant type at
the beginning, but spherocytes and echinocytes increasing over
time. Figure 8 shows the changes in the ratio of RBC types as the
storage period increases. Consistent with the image results, most
RBCs at the beginning of the storage period are discoid RBCs,
which account for more than 90% of the total cells. After 40 d, we
observed a drastic change in the RBC ratio, where RBCs trans-
formed from discocytes to transient echinocytes, and finally into
spherocytes. We manually counted cells in each class, to calcu-
late the accuracy of each RBC type. Figure 9 visualizes the classi-

fication confusionmatrix for each RBC class in the storage lesion
dataset. In the case of discocytes, there weremore than 2400 cells,
but they were well classified as discocytes. All other types of RBCs
also showed an accuracy of more than 95%. However, there were
cases where cells that were echinocytes and stomatocytes were
classified as discocytes.
This can be used as a reference to evaluate the quality of stored

blood. The proposed model results are consistent with previ-
ous studies that show that with increasing storage periods, the
main shape of RBCs changes. The goal was to develop a learning
method that can accurately segment and classify RBCs from dig-
ital holographic images, while obtaining results quickly. In ad-
dition, the method aims to efficiently measure the distribution
of RBCs within the cell images. This method can help monitor
the cell distribution, and determine whether the blood is safe for
transfusion.

6. Conclusion

In transfusion medicine, the ability to accurately assess the mor-
phological integrity of RBCs during storage is paramount. The
degradation of RBCs over time can lead to compromised cell
function and decreased transfusion efficacy, posing significant
challenges to patient safety. Traditional methods of RBC analysis
are often limited by their reliance on extensive manual evalua-
tion, which can be both time-consuming, and susceptible to hu-
man error. To overcome these limitations, this study introduces
an innovative approach using digital holographic microscopy in
conjunction with advanced deep learning techniques.
Our label-free holographic sensing approach integrates diffu-

sion models and self-supervised learning to improve RBC seg-
mentation and morphological analysis, even when only limited
datasets are available. The diffusion model significantly aids in
data augmentation by generating high-quality generated images
from noise, which enriches the training dataset, and improves
model robustness. Self-supervised learning enables the model
to effectively learn from a limited amount of labeled data, ad-
dressing the common issue of data scarcity in medical imag-
ing. The combination of these technologies results in a model
that achieves higher accuracy, while also reducing computational
time, making it suitable for real-time applications. Our results
demonstrate a marked improvement over traditional methods,
suggesting that this technology can facilitate more accurate and
efficient monitoring of RBC quality during storage. Ultimately,
the implementation of this technique could lead to safer and
more effective blood transfusions, as it ensures the delivery to
patients of functionally intact RBCs. Future research will focus
on extending this approach to other complex biological samples
and exploring broader applications inmedical diagnostics, poten-
tially paving the way for widespread improvements in healthcare
delivery.

7. Experimental Section
Data Preparation: To construct the RBC dataset, 2 mL of peripheral

blood was drawn from three healthy donors using sterile syringes. All pro-
cedures followed established ethical and biosafety guidelines, with prior
approval from the national biosafety committee at DGIST and relevant in-
stitutional review boards in South Korea (DGIST-180713-BR-012-01). Fol-
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Figure 7. Model classification and segmentation results on the storage lesion dataset. (a–k) The original RBC phase image along with the corresponding
segmentation map generated by our model for (8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57 days) of storage, respectively. For each storage period, six
test images (n = 6) were evaluated, and segmentation masks were generated by the trained model without manual correction.

lowing collection, the samples were centrifuged at 5000×g for 5 min at
4 °C to separate the blood components, and the buffy coat was carefully
removed to obtain purified RBCs.

To ensure consistent cell dispersion and minimize overlapping in the
field of view, the purified RBCs were resuspended in 1 mL of HEPA buffer,
which included HEPES, NaCl, glucose, KCl, MgCl2, and bovine serum al-
bumin to maintain osmotic stability and prevent cell aggregation. From
this suspension, two drops of the mixture were placed onto a clean slide
glass using a 20 μL pipette, and a cover glass was gently applied. This
preparation method was designed to produce a suitable cell density for
phase imaging while avoiding significant cell overlap, which could im-
pair phase reconstruction and segmentation accuracy. Although hemat-
ocrit levels were not measured directly, the consistency of this protocol
ensured well-separated RBCs in the acquired images, providing reliable
input for model training and evaluation.

Figure 8. Comparison of trends between the ratio of different RBC types
and storage period. As the storage period increases, RBCs change from
discocytes to spherocytes. For each storage period, six test images (n = 6)
were analyzed. The total number of RBCs per time point was as follows:
day 8: 254, day 13: 313, day 16: 363, day 23: 421, day 27: 490, day 30: 262,
day 34: 188, day 37: 156, day 40: 309, day 47: 213, and day 57: 290.

Figure 10 presents a representative data sample used in this study.
Holographic imaging was performed using an off-axis Mach–Zehnder
interferometric setup. The captured holograms were numerically propa-
gated to reconstruct quantitative phase images, based on Fresnel diffrac-
tion calculations. Additional algorithmic details are provided in Section
SB (Supporting Information). Both holograms and reconstructed images
had a resolution of 900 × 900 pixels, corresponding to a field of view of

Figure 9. Confusion matrix of the classification accuracy of each type of
RBC for the different storage periods dataset. The number of RBCs per
class was as follows: discocyte: 2469, spherocyte: 335, echinocyte: 312,
and stomatocyte: 143. Accuracy was calculated as the number of correctly
predicted RBCs divided by the total number of RBCs in each class.

Adv. Sensor Res. 2025, 4, e00073 e00073 (11 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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Figure 10. The RBC dataset used for training (Number of datasets: 179 images). a) Four different types of RBCs. b) Their respective 3D visualization. c)
Phase images obtained using digital holography. Each full-size image is 900 × 900 pixels, corresponding to a field of view of ≈129.68 μm × 129.68 μm.
d) Their corresponding labels.

≈129.68 μm × 129.68 μm. In total, 219 holograms of RBCs were recorded
and annotated by an expert biologist. For training 179 and for test data
40 were used. Labels were encoded as five-channel one-hot masks: back-
ground (0), discocytes (1), spherocytes (2), echinocytes (3), and stoma-
tocytes (4), with distinct color coding (black, red, blue, green, yellow, re-
spectively). This labeling scheme enabled accurate identification of indi-
vidual RBC types by deep learningmodels. To optimizememory usage and
augment the dataset, each image was divided into nine non-overlapping
patches of 256 × 256 pixels.

EvaluationMetrics: Two evaluationmetrics were calculated to evaluate
the segmentation results generated by deep learning. First, the Dice score,
often referred to as the Dice coefficient, was a crucial metric that was used
to evaluate segmentation models. The Dice score was calculated by taking
twice the area of overlap between the predicted and ground truth segmen-
tations, divided by the sum of the areas of the predicted and ground truth
segmentations:

DiceScore = 2 × |G ∩ S|
|G| + |S| (13)

where, |G| and |S| are pixels of ground truth and the corresponding seg-
mented image, respectively, while |G∩S| represents the intersection of the
two images. These models were also evaluated on the Aggregated Jaccard

Index (AJI). AJI was useful to evaluate the segmentation model at the ob-
ject level, as compared to the pixel level, and is defined as:[42]

AJI =
∑N

i=1
||Gi ∩ Si||∑N

i=1
||Gi ∪ Si|| +∑

i∈R
||Si||

(14)

where, Si is the predicted segmentation map, Gi is the ground truth, and
R is the set of predicted segmentation results that do not match with the
ground truth. As these inaccuracies will decrease the AJI score, this is use-
ful for detecting over- and under-segmentation results.

This study also measured the time required to process 10 images to
evaluate the model’s potential for real-time application, using the same
system conditions as the model. The tests were conducted on a Quadro
RTX 6000 GPU. The number of parameters and multiply–accumulate op-
erations (MACs) used in the model were also assessed. MACs refer to the
fundamental computational steps in neural networks, where each opera-
tion involves multiplying two numbers, then adding the result to an accu-
mulator, which serves as a key measure of model computational complex-
ity.

Statistical Analysis: All input RBC phase images were normalized to
a range of [−1, 1] prior to model training. To enhance data diversity
and alleviate class imbalance, rotation-based data augmentation was ap-
plied to both acquired and synthetically generated RBC phase–mask pairs.
Segmentation performance was evaluated using two quantitative met-
rics: Dice coefficient and AJI, both calculated by comparing the predicted

Adv. Sensor Res. 2025, 4, e00073 e00073 (12 of 13) © 2025 The Author(s). Advanced Sensor Research published by Wiley-VCH GmbH
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segmentation masks with the corresponding manually annotated ground
truth. For the comparison of model performance, evaluation was con-
ducted on a test set comprising 40 RBC images, and the reported values
represent the average scores across all test images for each RBC subtype
(discocyte, spherocyte, echinocyte, and stomatocyte).

To assess storage-dependent morphological changes, a separate RBC
dataset was tested that included samples stored over 11 different time pe-
riods (8, 13,16, 23, 27, 30, 34, 37, 40, 47, and 57 days). For each storage
period, six images were evaluated, and the ratio of each RBC type was cal-
culated by counting the number of segmented RBC per class in the model-
generatedmask and dividing by the total RBC count. For RBC classification
accuracy analysis, class-wise correctness was determined by comparing
the model’s predicted label with the manually annotated label for each in-
dividual RBC instance. The accuracy was then computed as the number of
correctly classified RBCs divided by the total number of RBCs per class.

All data processing, model training, and quantitative analyses were per-
formed using Python and PyTorch.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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