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A B S T R A C T

Single-shot digital holography in Gabor mode offers cost-effective quantitative phase imaging but suffers from 
the fundamental twin image problem, where real and conjugate images are inherently superimposed, severely 
limiting phase reconstruction accuracy. Traditional iterative phase retrieval methods require computationally 
expensive multiple propagations, while off-axis holography demands complex optical setups with precise 
alignment. We present the first unsupervised diffusion model for automated phase image reconstruction from 
single-shot in-line holograms, eliminating both twin image artifacts and the need for expensive off-axis config
urations. Our framework integrates cycle-consistency and denoising modules to enable training on unpaired 
hologram-phase image datasets, learning the mapping between low-cost in-line measurements and high-quality 
phase distributions without requiring labeled data pairs. Comprehensive evaluation on diverse biological spec
imens demonstrates that our approach significantly outperforms conventional unsupervised methods, achieving 
superior Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) values for both red 
blood cells and cancer cells. Critically, the model maintains exceptional performance even with limited training 
data, consistently outperforming supervised learning approaches under data-constrained conditions. The 
framework exhibits remarkable generalization capabilities, successfully reconstructing phase images from ho
lograms captured at different propagation distances and processing various cancer cell types not included in 
training data. This computational breakthrough enables accurate, scalable, and hardware-efficient quantitative 
phase imaging, democratizing access to high-quality phase microscopy for resource-constrained environments 
while maintaining reconstruction fidelity comparable to complex off-axis systems.

1. Introduction

The single-shot holography technique was first proposed by Gabor in 
1948 (Gabor, 1948). Since it uses fewer optical components and is 
relatively easy to install, single-shot holography with Gabor configura
tion without a separate reference beam has been applied to various 
fields, including biological applications (Moon and Javidi, 2008; Xu 
et al., 2001) and optical authentication (Chen, 2019). In Gabor mode, as 
originally identified by Gabor, the real and conjugate (twin) images are 
inherently superimposed within the recorded hologram—a fundamental 
characteristic that persists in both analog and digital implementations. 
To decouple these overlapping components from a single acquisition, 
iterative phase retrieval methods have been introduced, leveraging 
measurement diversity and prior knowledge of the sample (Koren et al., 

1993; Latychevskaia, 2019; Latychevskaia and Fink, 2007; Nakamura 
et al., 2007).

However, to reconstruct the actual phase value, light must be 
propagated back and forth several times, so the time consumption is 
large. Off-axis holography introduces a slight angular offset between the 
object and reference waves, which enables the separation and removal 
of the conjugate image in the frequency domain, thereby allowing ac
curate extraction of quantitative phase information from the sample 
(Cuche et al., 1999; Javidi et al., 2021; Kemper and von Bally, 2008; 
Rappaz et al., 2005). Moreover, off-axis holography enables the acqui
sition of label-free phase images of living cells suspended in a liquid 
medium, while minimizing radiation exposure. The phase information 
can be retrieved from a single hologram without the need for mechanical 
scanning, thereby facilitating three-dimensional (3D) reconstruction of 
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the specimen. Digital holography is used to study red blood cells 
(Bhabhor et al., 2024; Jaferzadeh and Moon, 2016; Jaferzadeh et al., 
2018; Rappaz et al., 2008; Yi et al., 2015), white blood cells (Ugele et al., 
2018), cancer cells (Lam et al., 2018; Pirone et al., 2022; Roitshtain 
et al., 2017), and cardiomyocytes (Ahamadzadeh et al., 2022; Shaked 
et al., 2010).

Despite the information from holography being very useful, many 
biological environments still present certain challenges in the wide 
applicability of off-axis holography. To obtain an image with perfect 
phase value through numerical reconstruction, off-axis holography must 
be equipped with a precise optical environment. Prior to recording ho
lograms of biological samples, the optical paths of the reference and 
object waves must be carefully aligned. Any modifications introduced in 
the object arm must be correspondingly adjusted in the reference arm to 
maintain proper interference conditions. The other challenging steps in 
holographic image reconstruction are phase unwrapping (Herráez et al., 
2002; Pritt and Shipman, 1994; Quiroga and Bernabeu, 1994), and 
digital correction of the phase aberrations (Colomb et al., 2006). While 
phase unwrapping algorithms can be applied to reconstruct continuous 
phase maps from wrapped phase images, these additional processing 
steps introduce computational complexity and potential sources of 
error, particularly in low signal-to-noise ratio conditions or when 
dealing with complex biological structures. Without proper application 
of these correction algorithms, it becomes challenging to extract accu
rate quantitative phase information from the sample.

1.1. Previous work and limitations

Recently, various state-of-the-art studies have produced meaningful 
results by applying deep learning to digital holography (Barbastathis 
et al., 2019; Moon, 2022). Several studies have focused on cellular 
analysis applications, including spatio-temporal cellular identification 
and pathological diagnosis (O’Connor et al., 2020; O’Connor et al., 
2021), red blood cell segmentation and classification (Kim et al., 2022), 
and multi-depth phase-only hologram generation using convolutional 
neural networks (Yan et al., 2024). Furthermore, extensive research has 
been conducted on deep learning approaches for holographic phase 
reconstruction, with numerous studies demonstrating the potential of 
neural networks in recovering phase information from holographic data. 
Dardikman-Yoffe et al. (2020) developed PhUn-Net, a multi-layer 
encoder-decoder residual convolutional neural network specifically for 
phase unwrapping in biological cells, demonstrating robustness across 
various cell types. Jaferzadeh and Fevens (2022) proposed Hol
oPhaseNet using conditional generative adversarial networks for auto
mated hologram reconstruction, achieving high accuracy in phase 
recovery tasks. Park et al., 2023, 2024 developed supervised models for 
both automated quantitative phase reconstruction and super-resolution 
enhancement in digital holography, successfully achieving high recon
struction quality. Rivenson et al. (2019) introduced a pioneering su
pervised deep learning framework for phase recovery and holographic 
reconstruction using neural networks, demonstrating remarkable per
formance in eliminating twin-image artifacts and reconstructing phase 
information from single holograms. These supervised approaches have 
shown impressive capabilities in various holographic imaging 
applications.

However, the majority of these deep learning approaches for holo
graphic phase reconstruction have been developed within the super
vised learning framework, each with inherent limitations that constrain 
their practical deployment. PhUn-Net required extensive paired datasets 
of wrapped and unwrapped phase images for training, while Hol
oPhaseNet necessitated substantial labeled training data and remained 
limited to specific optical configurations. The supervised models by Park 
et al. suffered from poor generalization when training data was limited 
and required computationally expensive data collection processes. 
Similarly, Rivenson et al.’s approach, despite its remarkable perfor
mance, required extensive paired training datasets, making it 

challenging to adapt to new sample types or imaging conditions without 
retraining.

The reliance on supervised learning creates several fundamental 
challenges for practical implementation. First, acquiring large-scale 
paired datasets is labor-intensive and costly, particularly for biological 
applications where ground truth phase images must be obtained through 
complex off-axis holographic setups. Second, supervised models typi
cally exhibit poor generalization to sample types not included in the 
training data, limiting their versatility across diverse biological speci
mens. Third, the requirement for extensive labeled data becomes pro
hibitive when dealing with limited data scenarios, which are common in 
specialized biological research.

While some unsupervised approaches have been proposed, they face 
significant limitations. Li et al. (2020) demonstrated unsupervised 
auto-encoder methods for single-shot digital in-line holography recon
struction, but their iterative approach requires multiple back-and-forth 
light propagations, resulting in substantial computational time for 
generating phase images from single holograms. Similarly, Manisha 
et al. (2023) showed twin image removal using random 
illumination-based recording with unsupervised auto-encoders, but this 
method also relies on iterative processing that significantly slows down 
single-shot phase reconstruction. Yin et al. (2020) developed a 
CycleGAN-based framework for digital holographic reconstruction using 
unpaired data, incorporating cycle consistency loss and generative 
adversarial networks. While their approach demonstrated robustness 
against displacement aberrations and defocusing effects, 
CycleGAN-based methods typically suffer from training instability and 
mode collapse issues. Zhang et al. (2021) introduced PhaseGAN, a 
generative adversarial network-based approach for unpaired phase 
retrieval that incorporates physics of image formation. However, con
ventional unsupervised techniques like CycleGAN (Zhu et al., 2017), 
UNIT (Liu et al., 2017), and even PhaseGAN often struggle with the 
complex biological holographic data characteristics, particularly when 
dealing with diverse cellular morphologies simultaneously, highlighting 
the need for more robust unsupervised learning frameworks specifically 
designed for holographic phase reconstruction challenges.

1.2. Contribution

In this study, we present a groundbreaking computational frame
work that, for the first time in the field of digital holography, employs an 
unsupervised diffusion model for automated phase image reconstruction 
from single-shot in-line holograms recorded in cost-effective Gabor 
mode. Our approach addresses a fundamental challenge in holographic 
imaging: achieving high-quality quantitative phase reconstruction from 
low-cost, simple optical setups without requiring paired training data. 
The trained model operates as a true single-shot system, enabling rapid 
phase image acquisition by simply inputting an in-line hologram, which 
dramatically improves computational efficiency compared to traditional 
iterative phase retrieval methods that require multiple back-and-forth 
light propagations. This breakthrough eliminates the need for complex 
and costly off-axis holographic systems while maintaining reconstruc
tion fidelity, making quantitative phase imaging accessible for resource- 
constrained environments and real-time applications.

Our unsupervised diffusion-based approach demonstrates excep
tional robustness and generalization capabilities that surpass existing 
methods. The framework exhibits remarkable adaptability across vary
ing optical conditions, successfully reconstructing phase images from 
holograms captured at different propagation distances beyond the 
training range, addressing practical scenarios where precise distance 
control is challenging. Furthermore, the model shows superior gener
alization to diverse cellular morphologies, effectively processing various 
cancer cell types that were not included in the training dataset, along
side the original red blood cells and ovarian cancer cells used for 
training. Through comprehensive experimental validation, we demon
strate that our method significantly outperforms conventional 
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unsupervised techniques such as CycleGAN and UNIT while maintaining 
exceptional performance even with limited training data. This combi
nation of speed, robustness, and generalization capability represents a 
paradigm shift in holographic phase reconstruction, potentially 
democratizing access to high-quality quantitative phase microscopy for 
biological research and clinical applications.

The contributions of the proposed scheme can be summarized as 
follows: 

1. This study presents the first computational framework in digital 
holography that pioneers the use of an unsupervised diffusion model 
for automated phase image reconstruction from single-shot Gabor 
holograms, marking a significant advancement in data-driven phase 
reconstruction for digital holography.

2. Our approach achieves hardware–software co-optimization, 
enabling cost-effective quantitative phase imaging by transforming 
simple in-line holographic measurements into high-quality phase 
images. This allows off-axis-equivalent reconstruction performance 
from a significantly simpler and more compact optical system, 
thereby reducing complexity and cost while preserving quantitative 
fidelity.

3. The framework demonstrates superior reconstruction quality and 
robustness compared to conventional unsupervised methods such as 
CycleGAN and UNIT, while achieving exceptional performance even 
with limited training data, consistently outperforming supervised 
learning approaches under data-constrained conditions.

4. The trained model operates as a true single-shot system with rapid 
inference capabilities, dramatically outperforming traditional itera
tive phase retrieval methods in computational efficiency while 
maintaining high reconstruction fidelity for real-time applications.

5. The method exhibits exceptional generalization capabilities, suc
cessfully reconstructing phase images from holograms captured at 
different propagation distances and processing various cancer cell 
types not included in the training dataset, demonstrating remarkable 
adaptability to new optical conditions and cellular morphologies.

2. Method

2.1. Sample preparation

Peripheral blood samples were collected from three healthy donors 
via venipuncture and immediately mixed with HEPA buffer. The diluted 
blood was then applied onto imaging slides. All procedures were con
ducted in compliance with institutional guidelines and regulations 
(DGIST-180713-BR-012-01) and approved by the DGIST bio-safety 
committee and IRB in Korea. Experiments were completed within a 
few hours of collection, after which the samples were discarded 
correctly. For cancer cell imaging, the ovarian cancer cell line (SK-OV-3, 
HTB-77, ATCC) with epithelial morphology was used. Cells were 
maintained in 35 mm dishes with low walls and a polymer coverslip base 
(Ibidi 80136). They were cultured under standard conditions at 37 ◦C 
with 5 % CO2 in a humidified incubator. The growth medium consisted 
of BI RPMI 1640 (ATCC 30–2001), supplemented with 10 % fetal bovine 
serum (ATCC 30–2020).

2.2. In-line (gabor) and off-axis digital holographic imaging

Holographic imaging was carried out using a conventional digital 
holographic microscopy (DHM) setup, a configuration that is widely 
recognized and validated in prior studies (Cuche et al., 1999). The op
tical system was equipped with two Leica microscope objectives: a 20 ×
objective with numerical aperture 0.55 and a 40 × objective with nu
merical aperture 0.80, providing pixel sizes of 0.2849 μm and 0.1441 
μm, respectively. Coherent illumination was supplied by a red diode 
laser operating at 666 nm wavelength. Image detection was accom
plished using a CMOS camera with a sensor resolution of 1900 × 1200 

pixels and individual pixel dimensions of 5.86μm × 5.86 μm. The ho
logram size was cropped to 1024 × 1024 pixels to optimize computa
tional efficiency. All acquisitions were performed in a controlled 
laboratory environment with temperature stabilization to minimize 
thermal drift and mechanical vibrations.

Fig. 1 illustrates the general layout of in-line and off-axis digital 
holographic microscopy and demonstrates the fundamental differences 
between these two approaches. In our optical setup, the microscope 
objective (MO) is positioned immediately after the specimen to collect 
and magnify the diffracted object wave. For in-line hologram acquisi
tion, only the object wave was recorded through its interference with the 
unscattered illumination. The off-axis holography realized using a 
Mach–Zehnder interferometer, introduces a slight angular separation 
between the object and reference waves. This angular separation enables 
spatial frequency domain separation of the real image, twin image, and 
zero-order terms (Cuche et al., 1999). While off-axis holography pro
vides twin image-free reconstruction, it requires precise optical align
ment, beam path matching, and additional optical components 
including beam splitters and mirrors, resulting in significantly higher 
optical complexity and cost compared to the simplified in-line approach. 
To facilitate experiments, our system was designed to allow rapid 
switching between in-line and off-axis modes simply by operating the 
beam shutter, enabling efficient data collection under identical imaging 
parameters. It should be noted that while a basic digital holographic 
microscopy (DHM) without an MO offers simplicity, its transverse res
olution is fundamentally limited by the sensor pixel size and recording 
geometry, typically several micrometers. By contrast, incorporating an 
MO enables the reconstructed phase images to achieve a resolution 
approaching the diffraction limit of the imaging system, allowing 
transverse resolution below 1 μm. As established in prior work (Cuche 
et al., 1999), MO-based DHM can be regarded as a form of image ho
lography, since the hologram is recorded from the magnified interme
diate image produced by the MO rather than directly from the object.

Phase and amplitude images were reconstructed from off-axis holo
grams using established numerical propagation methods following the 
framework described by Cuche et al. (1999). Detailed mathematical 
formulations and implementation parameters of the reconstruction 
procedure are provided in the Supplementary Material S1. The recon
struction yields both amplitude images and phase images. Since the 
obtained phase values are typically wrapped within the [-π, π] interval, 
quality-guided phase unwrapping algorithms (Herráez et al., 2002) were 
applied when phase variations exceeded 2π to reconstruct accurate 
quantitative phase maps. The resulting phase images serve as reliable 
reference data, validated through established reconstruction algorithms 
and system specifications (Cuche et al., 1999).

For transparent biological specimens such as living cells, phase in
formation typically provides superior contrast and quantitative data 
compared to amplitude, as cellular structures exhibit minimal absorp
tion but significant refractive index variations. Phase information pro
vides quantitative optical path difference measurements directly related 
to sample thickness and refractive index variations, enabling calculation 
of important cellular parameters including dry mass, projected area, and 
cell volume (Roitshtain et al., 2017). Therefore, in this study, we focused 
only on phase reconstruction, which is most important for quantitative 
biological imaging applications, in model training.

2.3. Data generation

For model training, we collected two types of optical data: in-line 
holograms recorded in Gabor mode and high-quality phase images ob
tained from off-axis digital holographic microscopy. This training 
strategy enables our unsupervised diffusion model to learn the mapping 
relationship between cost-effective in-line holographic measurements 
and accurate quantitative phase information without requiring paired 
datasets. The off-axis phase images serve as reliable reference targets 
during the training process, providing ground truth phase information 
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with high accuracy validated by established reconstruction algorithms 
and system specifications. Importantly, once the model is trained, it 
operates as a true single-shot system requiring only a single in-line ho
logram input to generate the corresponding phase image, eliminating 
the need for off-axis measurements during inference.

In-line and off-axis holograms of red blood cells and cancer cell lines 
were acquired using digital holographic microscopy (DHM) (Fig. 2). Off- 
axis holograms were captured via a Mach–Zehnder interferometric DHM 
setup and reconstructed into phase images through numerical propa
gation based on Fresnel diffraction. In-line holograms were obtained by 
blocking the reference beam in the same system, thus recording only the 
object wave. The holograms were recorded at 1024 × 1024 pixels, while 
phase images reconstructed from off-axis holograms had a resolution of 
900 × 900 pixels due to the circular filtering process that isolates the 
useful diffraction information and eliminates noisy edge regions. The 
reconstructed images covered approximately 129.68 μm × 129.68 μm 

for red blood cells imaged at 40 × magnification and 256.38 μm ×
256.38 μm for cancer cells imaged at 20 × magnification. To ensure 
consistent region of interest for model training, the in-line holograms 
were cropped to 900 × 900 pixels to match the phase image dimensions. 
We recorded 900 holograms of red blood cell samples, and 750 holo
grams of cancer cells. Using data augmentation, such as rotation and 
flip, we created datasets containing 3600 images of red blood cell and 
3000 images of cancer cells, respectively. The test dataset consisted of 
images excluded from the training process and was used solely to 
evaluate the model’s performance. The test dataset was used by select
ing 200 images from each sample’s dataset, with the rest all being used 
as the training dataset.

2.4. Unsupervised diffusion model for phase reconstruction

This study presents an unsupervised diffusion model that directly 

Fig. 1. General layout of (a) in-line and (b) off-axis digital holographic microscopy. (c) Sample images from in-line holography showing recorded holograms and 
their corresponding FFT spectra for red blood cells and cancer cells. (d) Sample images from off-axis holography showing recorded holograms, FFT spectra, and 
reconstructed amplitude and phase images. The phase distributions include quantitative intensity bars indicating the range of reconstructed phase values in radians. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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reconstructs quantitative phase images from in-line holograms, solving 
the twin image problem without requiring complex off-axis optical 
configurations. The model utilizes two types of optical data during 
training: in-line holograms and clean phase images obtained from off- 
axis holography. Based on Özbey et al. (2023), this approach enables 
unsupervised learning where datasets do not require direct correspon
dence between specific hologram-phase image pairs. The model learns 

the general relationship between holographic patterns and phase dis
tributions using the entire dataset. The computational framework con
sists of two interconnected networks. First, a cycle-consistency module 
learns bidirectional translation between hologram and phase domains 
using cycle-consistency loss. Second, a diffusion module performs iter
ative noise removal to generate high-quality phase images or holograms 
by progressively refining the reconstruction over multiple steps.

Fig. 2. Representative images of red blood cells and cancer cells used for model training. Each in-line hologram and corresponding phase image have a resolution of 
900 × 900 pixels, covering an area of approximately 129.68 μm × 129.68 μm for red blood cells and 256.38 μm × 256.38 μm for cancer cells. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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The model is trained for phase reconstruction, but to implement 
unsupervised learning, both hologram-to-phase and phase-to-hologram 
transformations are learned during training. However, the primary 
function of the trained model is phase reconstruction from real optical 
holograms. The phase-to-hologram transformation serves merely as a 
computational mechanism that generates hologram-like patterns 
consistent with the input holographic data to enable unpaired training. 
Once training is completed, the model operates as a true single-shot 
system that generates corresponding phase images from single in-line 
holograms. The trained diffusion module, learned for generating phase 
images from in-line holograms, reconstructs phase images from actual 
captured in-line holograms.

This approach addresses several practical optical challenges by 
eliminating the need for precise beam alignment required in off-axis 
systems and reducing optical complexity and cost by removing addi
tional mirrors and beam splitters. The innovation lies in integrating 
computational techniques to solve a specific optical problem that has 
limited the practical deployment of in-line holography, while main
taining quantitative phase accuracy comparable to established optical 
methods.

2.4.1. Model architecture

2.4.1.1. Cycle-consistency module. The cycle-consistency module ad
dresses a fundamental challenge in unsupervised learning for holo
graphic reconstruction: how to learn meaningful mappings between in- 
line holograms and phase images without paired training data. This 
module establishes bidirectional translation between the hologram 
domain and phase domain by enforcing a mathematical constraint 
known as cycle-consistency.

Fig. 3 shows the process of the cycle-consistency module. The orig
inal phase images are obtained from off-axis holography, while the 
original in-line holograms are acquired from in-line holography. The 
module operates on the principle that if a hologram is transformed into 
the phase domain and then back into the hologram domain, the result 
should closely match the original hologram. Similarly, if a phase image 
is transformed into the hologram domain and back to the phase domain, 
it should return to its original form. This bidirectional constraint pre
vents the model from learning arbitrary or physically meaningless 
mappings between the two domains. The cycle-consistency module 

comprises two sets of generator–discriminator pairs, 
(

GP
ϕ,DP

ϕ

)
and 

(
GH

ϕ ,DH
ϕ

)
(Fig. 2). The GP

ϕ (hologram-to-phase generator) transforms in- 

Fig. 3. Overview of the process for training the cycle-consistency module. The cycle-consistency module consists of two generators and two discriminators, enabling 
bidirectional image translation between two domains: the in-line hologram and the phase image. (a) The process of generating an in-line hologram using an original 
phase image and generating a corresponding phase image for cycle consistency learning. (b) The process of generating a phase image using an original in-line 
hologram and generating a corresponding in-line hologram for cycle consistency learning. The discriminators evaluate the quality of the generated phase images 
and in-line holograms by distinguishing them from real images.
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line holograms into phase images, and the GH
ϕ (phase-to-hologram 

generator) performs the reverse transformation (Zhu et al., 2017). 

p̃=GP
ϕ(h) (1) 

h̃=GH
ϕ (p) (2) 

where, h and p represent the original in-line hologram and phase image, 
respectively, while ̃p and ̃h denote the phase image and in-line hologram 
generated by the cycle-consistency module. The generators of the cycle- 
consistency module used a ResNet backbone with two down-sampling, 
six residual, and two up-sampling blocks (He et al., 2016). The dis
criminators distinguish between generated images and real images for 
each domain. Discriminators help generators create images similar to 
actual images in each domain. The discriminators used five blocks with 
convolutional layer, batch normalization, and LeakyReLU.

To achieve unsupervised learning, the cycle-consistency module 
enforces round-trip consistency by transforming the generated phase 
images (by equation (1)) back to the in-line hologram domain and the 
generated in-line holograms (by equation (2)) back to the phase image 
domain through the corresponding generators (Zhu et al., 2017): 

p
͝
=GP

ϕ(h̃) (3) 

h
͝
=GH

ϕ (p̃) (4) 

where, p̃ and h̃ denote the phase image and in-line hologram generated 

by the cycle-consistency module, while p
͝ 

and h
͝ 

are the corresponding 

reconstructions projected back to the original domain through the 
generator.

2.4.1.2. Denoising module. The denoising module represents the core 
reconstruction engine of the proposed framework, designed to generate 
high-quality images through an iterative refinement process in both 
directions: from in-line holograms to phase images and from phase im
ages to in-line holograms. This bidirectional capability is essential for 
the overall framework to function effectively, as both transformations 
work synergistically to enable robust phase reconstruction from single- 
shot holographic measurements.

Fig. 4 shows the process of the denoising module. The module 
operates through two distinct processes: a forward process and a reverse 
process. The original phase images are obtained from off-axis hologra
phy, while the original in-line holograms are acquired from in-line ho
lography. In the forward process, both phase images and in-line 
holograms are progressively corrupted by adding Gaussian noise over 
multiple timesteps following a predefined noise schedule, until they are 
transformed into pure random noise. This forward process systemati
cally destroys the original image information by gradually increasing 
the noise level at each timestep. The reverse process learns to invert this 
corruption by training denoising networks to remove noise step by step, 
recovering the original information in each respective domain. Starting 
from pure noise, the reverse process iteratively refines the data through 
multiple denoising steps, gradually reconstructing either clean phase 
images or in-line holograms. This reverse process effectively learns the 
complex statistical relationships present in both holographic and phase 
data.

The forward process systematically corrupts clean images by 

Fig. 4. Overview of the process for training the denoising module. The denoising module is designed to iteratively refine noisy images and reconstruct high-quality 
phase images through a step-by-step denoising process. This module comprises two sets of generator–discriminator pairs. (a) The process of reconstructing a phase 
image. (b) The process of reconstructing an in-line hologram. Training is divided into a forward process, where Gaussian noise is progressively added to the phase 
image, and a reverse process, where the model iteratively denoises the input to reconstruct the original phase information.
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progressively adding Gaussian noise over T timesteps, as illustrated in 
Fig. 4. For phase image reconstruction (Fig. 4a), the process begins with 
a original phase image p and gradually transforms it through interme
diate noisy states pt-1, pt until reaching pure Gaussian noise pT at time
step T. Similarly, for in-line hologram reconstruction (Fig. 4b), the 
process starts with an original in-line hologram h and progresses through 
noisy intermediate states ht-1, ht to reach hT.

The mathematical formulation of this corruption process follows the 
diffusion framework described by Ho et al.: 

x(i,j)
t =

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − βt

√
x(i,j)

t− 1 +
̅̅̅̅
βt

√
ε(i,j), ε(i,j) ∼ N(0, 1) (5) 

where, t ∈ {1,2, ...,T}, x(i,j)
t represents either the noisy phase image pt or 

noisy in-line hologram ht at timestep t and pixel coordinates (i, j), and 
ε(i,j) is Gaussian noise sampled independently for each pixel. In subse
quent equations, the coordinates (i, j) will be omitted. The noise vari
ance schedule βt controls the amount of noise added at each timestep, 
following an exponentially scaled schedule (Song et al., 2020): 

βt =1 − e− βmin
1
T− 0.5(βmax − βmin)

2t− 1
T2 (6) 

where, βmin and βmax control the rate of noise variance increase through 
an exponentially scaled schedule. We set T = 4, βmin = 0.1, and βmax =

20.
The reverse process learns to systematically remove noise and 

reconstruct clean images from the corrupted data generated in the for
ward process. As illustrated in Fig. 4, this process operates in both di
rections: reconstructing phase images from noisy inputs (Fig. 4a) and 
reconstructing in-line holograms from noisy inputs (Fig. 4b).

The reverse process employs trainable neural networks to iteratively 
denoise images step by step. As shown in the figures, the denoising 
module comprises two sets of generator-discriminator pairs: 

(
GP

θ ,DP
θ
)

for 
phase image reconstruction and 

(
GH

θ ,DH
θ
)

for in-line hologram recon
struction. The generators take as input the noise-added image at time
step t along with conditioning information from the cycle-consistency 
module.

For phase image reconstruction (Fig. 4a), the generator GP
θ receives 

the noisy phase image pt and the in-line hologram h̃ generated by the 
cycle-consistency module GH

ϕ , producing a denoised phase image (Ho 
et al., 2020): 

pʹ=GP
θ (pt , h̃, t) (7) 

Similarly, for in-line hologram reconstruction (Fig. 4b), the gener
ator GH

θ takes the noisy in-line hologram ht and the phase image p̃ from 
the cycle-consistency module GP

ϕ (Ho et al., 2020): 

hʹ=GH
θ (ht , p̃, t) (8) 

The generators employ U-Net architectures with seven down- 
sampling blocks, one channel-wise self-attention block, and seven up- 
sampling blocks (Ronneberger et al., 2015; Woo et al., 2018). A learn
able temporal embedding corresponding to timestep t is incorporated as 
channel-specific bias into the feature maps within each sub-block to 
enable temporal conditioning.

To obtain the image at timestep t-1, posterior sampling (PS) is 
applied using the denoised predictions and the noisy input from the 
previous timestep (Kingma and Welling, 2013; Özbey et al., 2023; Xiao 
et al., 2021): 

x̂t− 1 = μt(x̂t , xʹ) + βtε (9) 

μt(x̂t , xʹ)=

̅̅̅̅̅̅̅̅̅̅̅̅
αt− 1βt

√

1 − αt
xʹ+

̅̅̅̅αt
√

(1 − αt− 1)

1 − αt
x̂t , βt =

1 − αt− 1

1 − αt
βt (10) 

where x̂t is the generated in the previous timestep, respresented by ĥt or 

p̂t and x́  is the denoised image, corresponding to hʹ or ṕ . x̂t− 1 is the 
image with one step of noise removed, resulting in ĥt− 1 or p̂t− 1 as the 
output of timestep t. αt = 1 − βt, αt =

∏
r=[0,1,..,t]αr and ε ∼ N(0,1), which 

is sampled noise independently same as the forward process, except for 
the last denoising step where ε = 0.

The discriminator of the denoising module distinguishes between the 
t-1 image created from the model’s predictions and calculations, and the 
t-1 image created by adding noise from the forward process. Each 
discriminator was composed of six sequential blocks, with each block 
containing two convolutional layers followed by a two-fold down-sam
pling operation. To enable temporal conditioning, a learnable temporal 
embedding was added to the feature maps within every block.

2.4.2. Model objective
The training objective operates through alternating discriminator 

and generator optimization stages, following the systematic process 
illustrated in the training flowchart (Fig. 5). The training begins with 
unpaired input data consisting of phase images p and in-line holograms 
h, which serve as the foundation for all subsequent computations.

Random timesteps t are independently selected for each domain, 
initiating the forward diffusion process that generates noisy sample pairs 
pt, pt− 1 and ht , ht− 1 according to Equation (5). Simultaneously, the 
generators within the cycle-consistency module establish cross-domain 
mappings: generator GH

ϕ transforms phase image p into hologram h̃ 
following Equation (2), while generator GP

ϕ converts hologram h into 
phase image p̃ using Equation (1). These cross-domain translations 
provide essential conditioning information for the subsequent denoising 
operations.

The generators within the denoising module then process the noisy 
inputs with cross-domain conditioning. Generator GP

θ receives noisy 
phase image pt along with cycle-generated hologram h̃, producing 
denoised phase image ṕ  through Equation (7). Concurrently, generator 
GH

θ processes noisy hologram ht with cycle-generated phase image p̃, 
outputting denoised hologram h́  via Equation (8). These denoised out
puts undergo posterior sampling calculations following Equation (9) to 
generate p̂t− 1 and ĥt− 1, representing images with one timestep of noise 
removed.

During discriminator training (Fig. 5a), two distinct types of adver
sarial evaluation occur simultaneously. The discriminators within the 
cycle-consistency module assess the realism of cross-domain translations 
by distinguishing between real images and cycle-generated outputs. The 
hologram discriminator within the cycle-consistency module optimizes 
(Goodfellow et al., 2014): 

LDH
ϕ
= E

[
− log

(
DH

ϕ (h)
)]

+ E
[
− log

(
1 − DH

ϕ (h̃)
)]

(11) 

while the phase discriminator within the cycle-consistency module op
timizes: 

LDP
ϕ
= E

[
− log

(
DP

ϕ(p)
)]

+ E
[
− log

(
1 − DP

ϕ(p̃)
)]

(12) 

The discriminators within the denoising module evaluate the 
denoising progression by comparing authentic temporal sequences 
against generated ones. The hologram discriminator within the denois
ing module distinguishes between real progression ht, ht− 1 and gener
ated progression ht, ĥt− 1 (Özbey et al., 2023): 

LDH
θ
= E

[
− log

(
DH

θ (t, ht , ht− 1)
)]

+ E
[
− log

(
1 − DH

θ (t, ht , ĥt− 1)
)]

(13) 

Similarly, the phase discriminator within the denoising module 
optimizes: 

LDP
θ
= E

[
− log

(
DP

θ (t, pt , pt− 1)
)]

+ E
[
− log

(
1 − DP

θ (t, pt , p̂t− 1)
)]

(14) 

Generator training follows identical forward processing but focuses 
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on optimizing generator performance against the trained discriminators 
(Fig. 5b). The generators within the cycle-consistency module receive 
adversarial feedback designed to fool their respective discriminators 
within the cycle-consistency module (Goodfellow et al., 2014): 

LGϕ = E
[
− log

(
DH

ϕ (h̃)
)]

+ E
[
− log

(
DP

ϕ(p̃)
)]

(15) 

The generators within the denoising module optimize their adver
sarial performance against the discriminators within the denoising 
module, aiming to produce temporally consistent denoising 

progressions (Özbey et al., 2023): 

LGθ =E
[
− log

(
DP

θ(t, pt , p̂t− 1)
)]

+ E
[
− log

(
DH

θ (t, ht , ĥt− k)
)]

(16) 

The cycle-consistency constraint provides crucial physical consis
tency by measuring reconstruction errors across multiple pathways. The 
cycle reconstruction pathway evaluates round-trip translations where 

phase images p are converted to holograms ̃h and back to phase images p
͝
, 

while holograms h undergo conversion to phase images p̃ and back to 

Fig. 5. Flowchart illustrating the training process of the unsupervised diffusion model for holographic phase reconstruction. (a) Training the discriminators and (b) 
training the generators through alternating optimization stages. The light gray boxes represent the unpaired input data: phase images p and in-line holograms h, 
which do not require direct correspondence. The blue boxes indicate the forward process that progressively adds noise to generate pt and ht at timestep t. The green 
boxes represent the reverse process that iteratively removes noise to reconstruct clean images. The brown boxes denote the cycle-consistency module operations that 
establish bidirectional mappings between hologram and phase domains. The gray boxes show objective function calculations including adversarial losses and cycle- 
consistency loss. The training alternates between discriminator optimization (a) and generator optimization (b) through gradient descent steps, repeating until 
convergence. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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holograms h
͝
. The consistency with denoised outputs ensures that the 

generators within the denoising module maintain fidelity to the original 
inputs, where hʹ represents the denoised hologram output from the 
denoising module’s generator GH

θ and pʹ represents the denoised phase 
image output from the denoising module’s generator GP

θ .The complete 
cycle-consistency loss encompasses (Özbey et al., 2023; Zhu et al., 
2017): 

Lcyc = E
[(

|p − p
͝
|1 +

⃒
⃒
⃒h − h

͝ ⃒⃒
⃒
1

)
+
(
|p − pʹ|1 + |h − hʹ|1

)]
(17) 

The integrated training objective combines these components 
through weighted loss terms. Generator training optimizes: 

Ltotal
G = λ1LGϕ + λ2LGθ + λ3Lcyc (18) 

while discriminator training minimizes: 

Fig. 6. Inference process that generates a phase image from a single in-line hologram and Gaussian random noise sample. (a) In-line hologram acquisition using a 
simplified optical setup where the sample is directly illuminated by laser light through a microscope objective and recorded by a CCD camera, producing a single-shot 
in-line hologram that serves as conditioning input for the model. (b) Model inference showing the iterative denoising process from timestep T to timestep 0. The 
trained generator GP

θ progressively denoises random Gaussian noise p̂T by conditioning on the input in-line hologram h through concatenation operations. At each 
timestep, the generator produces a denoised phase image ṕ , which undergoes posterior sampling to generate p̂t− 1 with one step of noise removed. This iterative 
process continues until timestep 0, producing the final denoised phase image p̂0 that effectively resolves the twin image problem inherent in the original in- 
line hologram.
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Ltotal
D = λ1

(
LDP

ϕ
+ LDH

ϕ

)
+ λ2

(
LDP

θ
+ LDH

θ

)
(19) 

The training alternates between these stages through gradient 
descent optimization with loss weights λ1 = λ2 = 1 and λ3 = 0.5, ensuring 
balanced adversarial training while maintaining cycle-consistency con
straints essential for robust holographic phase reconstruction.

2.4.3. Model inference
Once training is completed, the model operates as a true single-shot 

system that requires only an in-line hologram to reconstruct quantitative 
phase images, as illustrated in Fig. 6. This represents a fundamental 
departure from the training requirement where off-axis holograms were 
necessary to provide reference phase information. The critical distinc
tion is that off-axis holography is used exclusively during the one-time 
training process to establish reliable phase reconstruction capabilities, 
after which the trained model can process any new in-line hologram 
without requiring additional off-axis measurements.

The inference process begins with a single captured in-line hologram 
h acquired through the simplified optical setup shown in Fig. 6a and 
random Gaussian noise p̂T initialized at timestep T, as demonstrated in 
the inference flowchart (Fig. 6b). The trained generator GP

θ within the 
denoising module processes the concatenated input consisting of the 
noisy phase sample p̂t and the conditioning in-line hologram h, pro
ducing a denoised phase image ṕ  through Equation (7). This denoised 
output undergoes posterior sampling following Equation (9) to generate 
p̂t− 1, representing a phase image with one timestep of noise removed. 
The timestep counter is decremented (t ← t-1), and the iterative 
denoising process continues through multiple timesteps as illustrated in 
Fig. 6b until reaching timestep 0, where the final denoised phase image 
p̂0 is obtained. The flow chart for the inference process is shown in 
Fig. 7.

This iterative denoising process leverages the trained model’s 
learned understanding of the relationship between in-line holographic 
patterns and their corresponding phase distributions. The model applies 
its learned knowledge of holographic physics and twin image suppres
sion without requiring any additional measurements or off-axis refer
ence data. Each denoising step progressively removes noise while 
conditioning on the input hologram, ensuring that the final recon
struction maintains consistency with the measured holographic data.

The final output p̂0 provides a quantitative phase image that has 
effectively resolved the twin image problem inherent in the original in- 
line hologram. This reconstructed phase image contains the optical path 
difference information necessary for biological analysis, including 
cellular morphology, dry mass calculation, and 3D structure character
ization, all derived from a single holographic measurement without 
requiring the complex optical infrastructure traditionally associated 
with quantitative phase imaging.

2.5. Evaluation metrics

To more thoroughly assess the visual fidelity of the image translation 
results, we utilized two standard metrics commonly applied in image-to- 
image translation tasks. The first metric, peak signal-to-noise ratio 
(PSNR), measures the pixel-wise intensity difference between the 
reconstructed image and the ground truth, with higher values indicating 
greater similarity. The second metric, structural similarity index (SSIM) 
(Wang et al., 2004), evaluates perceptual similarity by considering 
luminance, contrast, and structural components. An SSIM value 
approaching 1 signifies a higher degree of resemblance between the two 
images.

3. Results

3.1. Phase reconstruction using the diffusion model

3.1.1. Results of the diffusion model that trained only red blood cells or 
cancer cells

We trained a diffusion model using in-line holograms and phase 
images of only RBCs or cancer cells. In the RBC data we used, both 
discocytes and spherocytes existed simultaneously (Kim et al., 2022). 
The phase images generated by the diffusion model were evaluated 
against ground truth phase images reconstructed from off-axis holo
grams. Fig. 8 presents both the reconstructed phase maps and corre
sponding 3D surface plots, demonstrating that our method successfully 
preserves the 3D structural information inherent in holographic imag
ing. The 3D surface plots clearly reveal the characteristic biconcave 
shape of red blood cells and the complex morphological features of 
cancer cells, confirming that the depth information is accurately 
reconstructed by our approach. The left column depicts results from a 
model trained solely on RBCs, while the right column shows outcomes 
from training exclusively on cancer cells.

As illustrated in Fig. 8, the phase line profiles extracted from the 
cropped regions demonstrate strong agreement between the diffusion 
model output and the ground truth, providing quantitative evidence that 
our method maintains the same 3D structural characteristics as the 
reference measurements. These line profiles show that the phase varia
tions across cellular features, which directly correspond to optical path 
differences and thus depth information, are accurately reproduced by 
our model, confirming that the 3D morphological information is faith
fully reconstructed.

The reconstruction performance shows some differences between the 
two cell types due to their distinct morphological characteristics. RBCs, 
with their consistent round morphology and uniform structural features, 
show excellent agreement with ground truth reconstructions. Cancer 
cells, however, tend to exhibit slightly blurred edges in the recon
structed phase images, particularly at cellular boundaries and extended 
processes. This occurs because cancer cells often display complex 

Fig. 7. Flowchart depicting the inference process of the trained unsupervised 
diffusion-based model for quantitative phase image reconstruction. Starting 
from a single acquired in-line hologram and an initial Gaussian noise sample, 
the model iteratively performs denoising through reverse diffusion steps, pro
gressively reconstructing a high-quality quantitative phase image. The infer
ence continues iteratively from timestep T down to timestep 0, achieving a 
precise final phase image reconstruction.
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Fig. 8. Red blood cell and cancer cell phase images generated from a diffusion model only trained on red blood cell or cancer cell holographic images. The ground 
truth image is shown on the left, and the corresponding image generated by the model is shown on the right. Below, a 3D surface plot of the reconstructed phase 
image is presented using a lookup table, followed by a magnified 3D view of the region marked with a white box. The bottom graphs display line profiles of the phase 
distribution across representative cells, comparing ground truth (orange) and generated results (blue). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)

S. Park et al.                                                                                                                                                                                                                                     Engineering Applications of Artiϧcial Intelligence 163 (2026) 112970 

12 



branching structures and irregular extensions that present greater 
challenges for reconstruction compared to the more uniform geometry 
of RBCs. The consistent morphology among RBCs makes them more 
amenable to accurate reconstruction, whereas the diverse and complex 
morphological features of cancer cells, including their extended pro
jections and irregular boundaries, can result in some edge blurring in the 
reconstructed phase images.

3.1.2. Results of the diffusion model that simultaneously trained red blood 
cells and cancer cells

Effective training of a deep learning model for phase reconstruction 
requires strong generalization capability to ensure robust performance 
across diverse samples. Even if data of different shapes are used as input, 
the performance of phase reconstruction should be the same. We trained 
a diffusion model using simultaneous in-line holographic and phase 
images of RBCs and cancer cells. The output phase image produced by 
the diffusion model was compared with the ground truth phase image 
obtained through numerical reconstruction of the off-axis hologram. 
Fig. 9 shows phase images and corresponding 3D surface plots generated 
from the diffusion model, demonstrating that our method continues to 
preserve the essential 3D structural information when trained on mul
tiple cell types simultaneously. The 3D surface plots clearly show that 
both the characteristic biconcave morphology of red blood cells and the 
complex structural features of cancer cells are accurately reconstructed, 
confirming that the depth and dimensional information inherent in 
holographic measurements is maintained across different cellular types.

Fig. 9 shows comparable results to those presented in Fig. 8, indi
cating that simultaneous training on multiple cell types does not 
compromise the reconstruction quality. The phase line profiles gener
ated by the diffusion model exhibit a high degree of similarity to the 
reference measurements, providing quantitative evidence that the 3D 
morphological characteristics are preserved regardless of the training 
strategy. These profiles demonstrate that the phase variations corre
sponding to optical path differences and cellular depth information are 
accurately reproduced across both cell types, validating that our method 
successfully maintains 3D reconstruction capabilities when handling 
diverse biological specimens simultaneously.

The reconstruction performance maintains the same characteristics 
observed in single-cell-type training: RBCs continue to show excellent 
reconstruction fidelity due to their consistent morphology, while cancer 
cells may exhibit slight edge blurring at cellular boundaries and 
extended processes due to their more complex and variable structural 
features. However, the overall 3D reconstruction quality remains high 
for both cell types, demonstrating the robustness of our approach across 
diverse cellular morphologies.

3.1.3. Single cell analysis of phase images reconstructed from the diffusion 
model

The reconstructed phase image offers detailed quantitative insights 
into cellular morphology. Based on this image, we computed the optical 
path difference (OPD) (Rappaz et al., 2005; Roitshtain et al., 2017). The 
OPD is directly proportional to the physical thickness of the cell and 
serves as a key parameter for quantitative phase analysis, providing 
essential 3D information about cellular structure and volume. To 
analyze individual cells, we applied image smoothing followed by Otsu 
thresholding to generate binary masks, which were then used to segment 
single-cell regions (Fig. 10a). For each segmented cell, we extracted 
three key 3D metrics: dry mass, projected area, and phase volume. Dry 
mass reflects the total non-aqueous content within the cell; the projected 
area represents the cell’s two-dimensional footprint; and phase volume 
offers an OPD-based estimation of the intracellular volume, accounting 
for variations in refractive index and cellular thickness.

These quantitative measurements demonstrate that our recon
structed phase images preserve the essential 3D information necessary 
for accurate cellular analysis. The successful calculation of phase vol
ume, in particular, validates that our method maintains the depth- 

related information encoded in the original holographic measure
ments, as this parameter directly depends on the optical path differences 
that reflect the 3D cellular structure.

Fig. 10 compares the quantitative measurements of the ground-truth 
phase images with those obtained from the phase images reconstructed 
by each model. When comparing the extracted information, the diffu
sion model shows almost similar results whether it trains only RBCs or 
cancer cells, or simultaneously trains both data. The strong correlation 
between measurements from ground truth and reconstructed phase 
images for all 3D parameters demonstrates that our method successfully 
preserves the quantitative 3D information necessary for accurate 
cellular morphometry and volumetric analysis. The reconstructed re
sults show strong agreement with the ground truth for RBCs, owing to 
their consistent shape, whereas cancer cells exhibit minor deviations due 
to their structural heterogeneity.

3.2. Comparison results with GAN models based on unsupervised learning

3.2.1. Comparison results that trained only red blood cells or cancer cells
We compared the results of phase reconstruction of the diffusion 

model with CycleGAN and UNIT, which are famous unsupervised 
learning-based GAN models (Fig. 11). CycleGAN shows poor recon
struction, with dark regions of the inline hologram barely being recon
structed. For the UNIT model, the phase image appears to be well 
reconstructed for RBCs, but there are parts that appear blurry. Unsu
pervised GAN models struggle with cancer cell reconstruction, display
ing significant shape variances from the ground truth and consistently 
missing numerous cells. This challenge is fueled by the vastly diverse 
morphology of cancer cells, rendering precise image reconstruction a 
quite difficult task.

3.2.2. Comparison results that simultaneously trained red blood cells and 
cancer cells

Unlike the previous results, unsupervised GAN-based models, when 
trained simultaneously on two different types of data, show very large 
problems in phase reconstruction (Fig. 11). In the case of CycleGAN, it 
can be seen in red blood cell reconstruction that an image similar to a 
cancer cell is reconstructed. Additionally, in cancer cell reconstruction, 
no image is reconstructed at all. In the case of UNIT, while in RBC 
reconstruction, some cells are reconstructed to some extent, many other 
cells are missing. In cancer cell reconstruction, the shape is barely 
recognizable. In contrast, the diffusion model generated images similar 
to the ground truth, regardless of RBCs and cancer cells. This shows that 
the model can simultaneously train more diverse cells, and generaliza
tion is possible.

3.2.3. Evaluation metrics for diffusion and comparative models
Tables 1 and 2 present the outcomes of evaluating the similarity 

between the generated images and the ground truth, using SSIM and 
PSNR as key metrics. In the context of red blood cells (RBCs), GAN-based 
models demonstrated a PSNR of around 30, whereas the diffusion model 
exhibited a notably higher PSNR exceeding 33. Similarly, in SSIM cal
culations, the model recorded the highest values. Interestingly, when 
trained exclusively on RBCs, the performance of the GAN-based models 
improved, compared to when simultaneous trained on RBCs and cancer 
cells. However, in the diffusion model, this trend was reversed, which 
model showed significantly better results when concurrently trained on 
both RBCs and cancer cells. A parallel pattern emerged with cancer cells: 
when trained solely on cancer cells, the GAN-based models achieved 
superior outcomes, as opposed to when trained jointly with RBCs. This 
differential was more pronounced than in the RBC test. In contrast, the 
diffusion model maintained high-performance indices, regardless of 
whether it was trained only on cancer cells, or simultaneously on both 
cell types. These findings suggest that for the GAN-based models, 
simultaneous training of different data types may lead to confusion in 
distribution learning. Conversely, for the diffusion model, training on a 
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Fig. 9. Red blood cell and cancer cell phase images generated from a diffusion model simultaneously trained on red blood cell and cancer cell holographic images. 
The ground truth image is shown on the left, and the corresponding image generated by the model is shown on the right. Below, a 3D surface plot of the reconstructed 
phase image is presented using a lookup table, followed by a magnified 3D view of the region marked with a white box. The bottom graphs display line profiles of the 
phase distribution across representative cells, comparing ground truth (orange) and generated results (blue). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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Fig. 10. Quantitative analysis of cellular features extracted from phase images generated by the diffusion model. (a) is the process of creating segmented cell images 
for cell analysis. (b) is single cell analysis for RBCs data, and (c) is single cell analysis for cancer cell data. Four indicators were calculated from cell images. The 
orange box is the ground truth, while the blue box results from a model trained only RBCs or cancer cells. The green box results from a model simultaneously trained 
on RBCs and cancer cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

S. Park et al.                                                                                                                                                                                                                                     Engineering Applications of Artiϧcial Intelligence 163 (2026) 112970 

15 



diverse data set appears to facilitate more robust feature extraction.

3.2.4. Computational cost for diffusion and comparative models
While our diffusion model demonstrates superior reconstruction 

performance compared to CycleGAN and UNIT, it is essential to evaluate 
the computational cost associated with these improvements. We per
formed our comparison using a single NVIDIA Quadro RTX 6000. As 
shown in Table 3, the diffusion model has significantly more parameters 
compared to CycleGAN and UNIT, representing approximately 17-fold 
and 16-fold increases respectively. This larger model size translates to 
higher memory requirements compared to CycleGAN and UNIT, 
requiring approximately 17 times more memory resources. Addition
ally, the training time per epoch is substantially longer for the diffusion 
model (3.5275 s) compared to CycleGAN (0.40375 s) and UNIT 

(0.49625 s), requiring approximately 9 times more computational re
sources during training. These increased computational demands during 
training reflect the complex iterative denoising process and the dual- 
module architecture incorporating both cycle-consistency and denois
ing components, which contribute to the model’s enhanced recon
struction capabilities.

Despite the higher training costs, the diffusion model demonstrates 
practical efficiency during inference with a reconstruction time of 0.271 
s per image, which approaches real-time performance suitable for clin
ical applications. While this is not faster than CycleGAN (0.025 s) or 
UNIT (0.058 s), the inference speed remains acceptable for practical 
deployment, especially considering the substantial quality improve
ments achieved. The reconstruction quality gains, as demonstrated by 
consistently higher PSNR and SSIM values across both red blood cells 
and cancer cells, justify the computational overhead. The trade-off 
analysis reveals that while the diffusion model requires more compu
tational resources during training and slightly longer inference times, 
the superior reconstruction fidelity and robustness across diverse 
cellular morphologies provide significant value for quantitative phase 
imaging applications. This computational cost-to-performance ratio 
represents a worthwhile investment for applications where 

Fig. 11. Results of the red blood cell and cancer cell phase image generated by CycleGAN, UNIT, and the diffusion model. The left side of the result is comparison 
results that trained only red blood cells or cancer cells, and the right side of the result is comparison results that simultaneously trained red blood cells or cancer cells. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1 
PSNR and SSIM values for phase images generated by models trained only red 
blood cells or cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells

CycleGAN 31.55/0.7253 32.07/0.8255
UNIT 31.59/0.7402 31.34/0.8029
Diffusion model 33.09/0.7625 33.90/0.8449

Table 2 
PSNR and SSIM values for phase images generated by models simultaneously 
trained on red blood cells and cancer cells from 200 test images (left: PSNR, 
right: SSIM).

Model Red blood cells Cancer cells

CycleGAN 29.12/0.5384 28.73/0.4999
UNIT 30.96/0.7318 31.27/0.7506
Diffusion model 34.26/0.8359 35.27/0.8591

Table 3 
Model complexity and computational efficiency comparison: parameters, 
memory usage, training time, and inference time for diffusion model, CycleGAN, 
and UNIT.

Model # Parameters Memory 
usage

Training 
time

Inference 
time

CycleGAN 21,194,116 80.86 MB 0.403 s 0.025 s
UNIT 22,327,684 85.18 MB 0.496 s 0.058 s
Diffusion 

model
361,260,426 1378.1 MB 3.527 s 0.271 s
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reconstruction accuracy is paramount, such as medical diagnostics and 
biological research.

3.3. Comparison results with supervised learning-based model in scenarios 
with limited data

3.3.1. Comparison results that trained only red blood cells or cancer cells
We compared the phase reconstruction results of the unsupervised 

diffusion model with that of the supervised model (Fig. 12). The su
pervised model was trained on paired data using only the denoising 
module, which excludes the cycle consistency module incorporated in 
the unsupervised model. The comparison was also conducted in a sce
nario characterized by a scarcity of labeled data, with each model being 
trained using merely 50 labels.

When trained with only RBCs, both the supervised model and the 
diffusion model showed excellent performance when all available data 
was used for training. When limited to training using only 50 labels, the 
supervised model showed that certain cells were not reconstructed, but 
overall the reconstruction was performed well. The diffusion model 
reliably reconstructed cells. When only cancer cells were trained, a 
similar trend was observed as for RBCs, but a larger difference occurred. 
In particular, when limited to 50 labels, the supervised model showed a 
very large difference from the ground truth. This can be inferred as a 
result of the diversity of cell morphology. Because most cells in RBCs 
have similar morphology, a supervised model can be trained to perform 
reconstruction even if only a small amount of data is used. However, 
because cancer cells vary significantly in their morphology, using a 
small amount of labeled data can lead to a decrease in performance. The 
unsupervised learning model shows better generalization compared to 
the supervised learning model, as it can efficiently utilize a large amount 
of input data and train across the domain.

3.3.2. Comparison results that simultaneously trained red blood cells and 
cancer cells

Similar to previous results, we compared the phase reconstruction 

results of the diffusion model with those of the supervised model when 
simultaneously training on both red blood cells and cancer cells 
(Fig. 12). When utilizing all available data, the supervised model 
effectively reconstructed the phase images of both red blood cells and 
cancer cells. However, a significant decline in performance was 
observed when each model was trained using only 50 labels for each cell 
type. In the case of cancer cells, the difference was more pronounced, 
and a noticeable deterioration in the reconstruction quality of red blood 
cells was also evident. In contrast, the diffusion model demonstrated the 
capability to generate images similar to the ground truth, both when 
using the full dataset and when limited to 50 labels per cell type.

3.3.3. Evaluation metrics for diffusion and comparative models
Tables 4 and 5 present the results of evaluating the similarity be

tween generated images and the ground truth using SSIM and PSNR. The 
supervised model exhibits excellent performance when trained with the 
full dataset, particularly when simultaneously training from both red 
blood cells and cancer cells, showing high SSIM and PSNR values for 
both cell types. However, the model’s performance declines when the 
number of labels is limited to 50. This performance drop is particularly 
pronounced in the phase reconstruction of cancer cells, where both SSIM 
and PSNR values significantly decrease. In contrast, the diffusion model 
maintains consistent performance regardless of the number of labels. In 
particular, it shows almost no decrease in performance in the recon
struction of cancer cell phase images, where the performance of the 

Fig. 12. Results of the red blood cell and cancer cell phase image generated by the supervised model and the diffusion model trained using all and limited data. The 
top of the result is the entire phase image, and the bottom is the cropped image of the cell with the red box enlarged. The results are separated into comparison results 
that trained only red blood cells or cancer cells and comparison results that simultaneously trained red blood cells or cancer cells. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 4 
PSNR and SSIM values for phase images generated by models trained only red 
blood cells or cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells

Supervised model 32.81/0.8862 35.64/0.9091
Supervised model with 50 labels 32.46/0.8668 29.74/0.8046
Diffusion model 33.09/0.7625 34.90/0.8449
Diffusion model with 50 labels 31.99/0.7291 33.01/0.8345
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supervised model was significantly lowered. Nevertheless, the super
vised model performs well with red blood cells, likely because red blood 
cells have more consistent morphology compared to cancer cells. 
Because the morphology of red blood cells is similar among cells, it is 
easy to extract cell characteristics even when using a small amount of 
data. Conversely, the varied morphology among cancer cells presents 
challenges in feature extraction and training with limited data. The 
unsupervised diffusion model, optimized to train on the general char
acteristics of the domain, demonstrates superior performance even with 
fewer labels compared to the supervised model.

3.4. Noise schedule parameters sensitivity analysis

The performance of diffusion models is critically dependent on the 
choice of hyperparameters, particularly the noise schedule parameters 
that govern the forward diffusion process. To ensure reproducibility and 
understand the robustness of our approach, we conducted a compre
hensive sensitivity analysis on key hyperparameters: the number of 
timesteps (T) and the noise variance bounds (βmin and βmax) using 
models simultaneously trained on both red blood cells and cancer cells. 
This analysis is essential for validating the stability of our model and 
providing guidance for parameter selection in different experimental 
conditions. The hyperparameters used in our main experiments (T = 4, 
βmin = 0.1, βmax = 20) were adopted from the denoising diffusion GAN 
framework proposed by Özbey et al., which has demonstrated effec
tiveness in medical imaging applications. However, given the unique 
characteristics of holographic phase reconstruction, it is crucial to 
evaluate how variations in these parameters affect reconstruction 
quality. We systematically varied timesteps (T = 2, 6, 8) and noise 
variance bounds across three configurations to assess their impact on 
phase reconstruction performance.

The experimental results presented in Table 6 demonstrate clear 
relationships between hyperparameter choices and reconstruction 
quality across different cell types. For timestep sensitivity, we observed 
progressive improvements in both SSIM and PSNR metrics as the num
ber of timesteps increased. Cancer cells showed SSIM values improving 
from 0.814 (T = 2) to 0.836 (T = 6) and 0.849 (T = 8), with corre
sponding PSNR increases from 34.32 to 34.58 and 34.98 dB respectively. 
Red blood cells exhibited similar trends with SSIM values of 0.788, 
0.814, and 0.829, and PSNR values of 34.32, 34.42, and 34.93 dB. 
Notably, our main configuration (T = 4, βmin = 0.1, βmax = 20) achieved 
the highest performance with RBC: 34.26 dB/0.8359 and Cancer: 35.27 

dB/0.8591, surpassing all tested variations. Among the noise variance 
configurations, moderate settings (βmin = 0.05, βmax = 10) showed 
competitive performance with SSIM values of 0.843 (cancer) and 0.841 
(red blood cells), while excessive noise variance led to degradation. This 
validates our parameter selection and demonstrates that balanced noise 
scheduling is crucial for optimal phase reconstruction.

3.5. Comparison with iterative phase reconstruction methods

To evaluate the feasibility of single-shot phase reconstruction from 
in-line holograms, we conducted comparative experiments with itera
tive phase reconstruction methods. Two distinct approaches were tested: 
conventional numerical iterative algorithm (Latychevskaia, 2019) and 
deep learning-based iterative method (Deep DIH) (Li et al., 2020). The 
numerical approach utilized established phase retrieval techniques such 
as the Gerchberg-Saxton (GS) algorithm, which employs 
constraint-based optimization through alternating projections between 
the hologram and object planes. The deep learning-based method 
leveraged neural network architectures to learn the mapping between 
holographic measurements and phase distributions. All experimental 
comparisons were standardized using 1000 iterations to ensure fair 
evaluation across different algorithmic approaches.

The comparative results, demonstrated in Fig. 13, reveal significant 
differences in reconstruction quality between methods. The GS algo
rithm shows partial success in recovering red blood cell morphology but 
exhibits substantial background artifacts. Deep DIH provides better 
background suppression but fails to accurately reconstruct cellular 
structures. The proposed diffusion model achieves superior reconstruc
tion fidelity, closely matching ground truth for both cellular detail and 
background clarity. Quantitative evaluation in Table 7 confirms these 
observations, with the diffusion model achieving 34.26 dB PSNR/ 
0.8359 SSIM for red blood cells and 35.27 dB/0.8591 for cancer cells, 
substantially outperforming GS (RBC 17.15 dB/0.6525, Cancer 25.48 
dB/0.7461) and Deep DIH (RBC 21.93 dB/0.7333, Cancer 30.37 dB/ 
0.8220). The superior performance of Deep DIH over GS stems from 
better background reconstruction capability.

These reconstruction challenges arise from fundamental limitations 
in single-shot in-line holography. As established by Latychevskaia and 
Fink, twin image interference creates severe problems for complex 
biological specimens with varying optical densities and irregular mor
phologies. Biological samples present additional complications 
including weak phase contrast, irregular boundaries, and heterogeneous 
refractive indices that violate sparse object assumptions underlying 
conventional algorithms. Such factors make convergence challenging, 
rendering traditional iterative methods unreliable for biological speci
mens. Additionally, the proposed method demonstrates exceptional 
computational efficiency, requiring only 0.271 s per one image 
compared to GS (475.80 s) and Deep DIH (286.09 s). This advantage 
stems from direct inference through pre-trained networks versus itera
tive optimization processes, making conventional approaches imprac
tical for real-time applications.

3.6. Robustness evaluation across different propagation distances

One critical limitation of diffusion-based holographic reconstruction 
models is their potential sensitivity to variations in optical parameters, 
particularly propagation distance, which directly affects hologram for
mation and phase reconstruction quality. To evaluate the robustness of 
our approach under varying imaging conditions, we conducted a 
comprehensive analysis comparing models trained on two distinct 
datasets: one with randomized propagation distances and another with 
fixed in-focus distances. For red blood cells imaged at 40 × magnifica
tion, training data was acquired with randomly adjusted distances 
within ±1.8 μm from the in-focus position, while cancer cells at 20 ×
magnification utilized a ±3.0 μm range. Test datasets were 

Table 5 
PSNR and SSIM values for phase images generated by models simultaneously 
trained on red blood cells and cancer cells from 200 test images (left: PSNR, 
right: SSIM).

Model Red blood cells Cancer cells

Supervised model 34.68/0.8996 35.32/0.9067
Supervised model with 50 labels 30.23/0.8277 30.39/0.8136
Diffusion model 34.26/0.8359 35.27/0.8591
Diffusion model with 50 labels 33.04/0.8084 33.08/0.8305

Table 6 
Hyperparameter sensitivity analysis results for diffusion model trained on both 
red blood cells and cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells

Main (T ¼ 4, β ¼ 0.1/20) 34.26/0.8359 35.27/0.8591
T ¼ 2, β ¼ 0.1/20 33.20/0.7882 34.32/0.8144
T ¼ 6, β ¼ 0.1/20 33.78/0.8148 34.58/0.8358
T ¼ 8, β ¼ 0.1/20 34.31/0.8294 34.98/0.8485
T ¼ 4, β ¼ 0.05/10 33.20/0.8410 34.29/0.8431
T ¼ 4, β ¼ 0.2/40 33.71/0.7959 34.58/0.8225
T ¼ 4, β ¼ 0.1/50 34.11/0.8239 34.97/0.8545
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systematically generated at 0.3 μm intervals (RBCs) and 0.5 μm intervals 
(cancer cells) across their respective ranges, with five images acquired at 
each distance position. This experimental design allows us to assess how 
training data diversity in propagation distance affects model general
ization and reconstruction fidelity under defocused conditions, 
addressing practical scenarios where precise focus control may be 
challenging.

The results for red blood cells, as shown in Fig. 14a, reveal significant 
sensitivity to negative propagation distance variations due to the high 
magnification (40 × ) used for imaging. Both models demonstrate 
acceptable reconstruction quality within the positive distance range, 
where the in-line holograms remain relatively similar to the in-focus 
condition. However, performance degrades substantially for negative 
distances beyond − 0.9 μm, as evidenced by sharp drops in both SSIM 
and PSNR metrics. The model trained with random distances shows 
robustness, maintaining recognizable cellular morphology even at − 1.2 
μm, while the in-focus trained model loses cellular features beyond this 
threshold. This performance difference highlights the importance of 
training data diversity in achieving robust reconstruction across varying 
optical conditions. The asymmetric performance between positive and 
negative distances suggests that the in-focus hologram characteristics 
are more similar to slightly positive-defocused conditions, explaining 
the better reconstruction quality in the positive direction. These findings 
emphasize the need for careful consideration of propagation distance 
variations during model training for high-magnification applications.

Cancer cell reconstruction demonstrates significantly improved 
robustness across different propagation distances, as illustrated in 
Fig. 14b, primarily due to the lower magnification (20 × ) that reduces 
sensitivity to distance variations. Both training approaches maintain 
cellular morphology visibility across the entire tested range, with 
quantitative metrics showing less degradation compared to red blood 
cells. For models trained with random distances, negative distances still 

present challenges, but the performance reduction is substantially less 
severe, and cellular structures remain clearly distinguishable even at 
extreme positions. The comparison between random distance and in- 
focus training reveals consistent but gradual performance differences, 
with the random distance approach showing slightly superior SSIM and 
PSNR values across most tested positions. Notably, the performance gap 
between the two training strategies is considerably smaller for cancer 
cells than for red blood cells, indicating that lower magnification im
aging provides inherent robustness to distance variations. These results 
demonstrate that our diffusion model can effectively reconstruct cancer 
cell phase images across a practical range of propagation distances, 
making it suitable for applications where precise focus control may be 
challenging or where rapid imaging protocols are required.

3.7. Generalization evaluation on different cancer cell morphologies

To evaluate the generalization capability of our diffusion model 
across diverse cellular structures, we conducted experiments using two 
distinct training configurations with varying levels of morphological 
diversity. The single-cancer configuration utilized our standard dataset 
comprising red blood cells and ovarian cancer cells (SKOV3), while the 
multi-cancer approach incorporated red blood cells alongside four 
different cancer cell lines representing various origins: ovarian (SKOV3), 
liver (SNU475), bladder (T24), and lung (NCI-H1299). As illustrated in 
Fig. 15, these cancer cell lines exhibit significantly different morpho
logical characteristics compared to the original ovarian cancer cells, 
including variations in cell size, shape complexity, and internal struc
tures. The liver cancer cells display larger, more circular morphologies, 
while bladder cancer cells show elongated structures, and lung cancer 
cells present irregular, highly variable shapes. This morphological di
versity provides a robust testing ground for assessing the model’s ability 
to generalize beyond its training data and reconstruct phase images from 
previously unseen cellular architectures, which is crucial for practical 
biomedical applications.

When examining reconstruction quality across different cancer cell 
morphologies, we observed consistent patterns in performance charac
teristics. As shown in Fig. 15, while reconstructed phase images main
tain good overall fidelity to ground truth measurements, these 
morphologically diverse cell types exhibit slight edge blurring at cellular 
boundaries, particularly in regions with complex structural features. 
Despite this visual edge softening, quantitative metrics demonstrate 
high reconstruction quality.

Fig. 13. Comparative reconstruction results from single-shot in-line holograms of biological samples. The top row shows red blood cells, and the bottom row shows 
cancer cells. From left to right: original in-line hologram, GS algorithm result, Deep DIH result, proposed diffusion model result, and ground truth obtained from off- 
axis holography. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 7 
Quantitative comparison of reconstruction methods showing PSNR/SSIM values 
for red blood cells and cancer cells, along with inference times.

Model Red blood cells Cancer cells Inference time

GS-based algorithm 17.15/0.6525 25.48/0.7461 475.80 s
Deep DIH 21.93/0.7333 30.37/0.8220 286.09 s
Diffusion model 34.26/0.8359 35.27/0.8591 0.271 s
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As summarized in Table 8, the comparative analysis reveals inter
esting trade-offs in model performance when training data diversity is 
increased through multi-cancer training. Models trained with the multi- 
cancer approach demonstrated improved reconstruction performance 
for cancer cells, with enhanced SSIM and PSNR metrics compared to the 
single-cancer training configuration. However, this improvement came 
at the cost of slightly reduced performance for red blood cell recon
struction. Notably, the single-cancer trained model still achieved 
reasonable reconstruction quality for the three previously unseen cancer 

cell lines (liver, bladder and lung), despite never encountering these 
morphologies during training. This demonstrates the diffusion model’s 
inherent ability to learn generalizable reconstruction principles rather 
than simply memorizing specific cellular features. The successful 
reconstruction of morphologically distinct cancer cells suggests that the 
model has effectively learned the underlying physics of phase image 
formation and holographic reconstruction processes.

3.8. Performance analysis with wrapped phase data

Phase wrapping is a fundamental challenge in quantitative phase 
imaging, where phase values are constrained to the range [-π, π], 
creating discontinuities at boundaries where the actual phase exceeds 
these limits. To assess our diffusion model’s capability in handling 
different phase representations, we conducted comparative experiments 
using wrapped and unwrapped phase images as training targets. 
Wrapped phase images contain artificial discontinuities where phase 
values jump from +π to -π (or vice versa), while unwrapped phase im
ages maintain continuous phase distributions that better represent the 
true optical path differences through biological specimens. This 

Fig. 14. Robustness evaluation across different propagation distances. Two training regimes are compared: a model trained only at the in-focus distance and a model 
trained with randomized propagation distances. For each dataset, the image montage shows representative results across defocus and the line plots report SSIM/ 
PSNR versus focus distance. (a) RBC results (40 × ). Training distances were randomized within ±1.8 μm; testing was performed every 0.3 μm with five images per 
position. Columns span − 1.8 → +1.8 μm; rows show (from top) input hologram, reference phase, reconstruction from the in-focus–trained model, and reconstruction 
from the random-distance–trained model. (b) Cancer-cell results (20 × ). Training distances were randomized within ±3.0 μm; testing used 0.5 μm steps with five 
images per position. The same row order is used as in (a), with columns spanning − 3.0 → +3.0 μm.

Fig. 15. Generalization of diffusion-based phase reconstruction across diverse cancer cell morphologies. To assess the model’s ability to generalize beyond its 
training data, we compared two training configurations: a single-cancer setup trained on RBCs and ovarian cancer cells, and a multi-cancer setup trained on RBCs 
plus four cancer cell lines (ovarian, liver, bladder, and lung). Representative examples are shown for three previously unseen cancer types: lung, liver, and bladder. 
Columns display the in-line holograms (left), ground-truth off-axis phase reconstructions (middle-left), single-cancer trained outputs (middle-right), and multi-cancer 
trained outputs (right).

Table 8 
Reconstruction performance comparison between single-cancer and multi- 
cancer training configurations across red blood cells and four cancer cell lines 
from 200 test images (left: PSNR, right: SSIM).

Training 
data

Red blood 
cells

Ovarian 
cancer

Lung 
cancer

Liver 
cancer

Bladder 
cancer

Single- 
cancer

34.26/ 
0.8359

35.27/ 
0.8591

35.70/ 
0.8753

35.90/ 
0.8724

34.45/ 
0.8567

Multi- 
cancer

33.88/ 
0.7867

35.63/ 
0.8766

36.20/ 
0.8787

36.62/ 
0.8767

35.21/ 
0.8625
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comparison is particularly relevant for practical applications where 
phase unwrapping algorithms may be unavailable or computationally 
expensive, potentially making wrapped phase reconstruction an attrac
tive alternative. The experimental setup utilized the same in-line holo
gram inputs but different ground truth phase representations, allowing 
direct assessment of how phase representation affects reconstruction 
quality. Understanding these differences is crucial for determining 
optimal training strategies and evaluating the model’s robustness across 
different phase imaging scenarios commonly encountered in digital 
holographic microscopy applications.

The experimental results demonstrate significant performance dif
ferences between wrapped and unwrapped phase training approaches, 
as illustrated in Fig. 16. Models trained with wrapped phase data 
struggled to accurately reconstruct continuous phase transitions, 
particularly in regions where phase wrapping occurred. While recon
struction quality remained reasonable in areas without phase disconti
nuities, the model failed to properly identify and handle phase transition 
boundaries, resulting in artifacts and discontinuous phase profiles. In 

contrast, models trained with unwrapped phase data successfully 
reconstructed continuous phase distributions, maintaining smooth 
transitions across the entire cellular structure. The quantitative analysis 
reveals that while PSNR and SSIM metrics appear relatively similar 
(wrapped: RBC 33.23/0.7764, Cancer 34.36/0.8225; unwrapped: RBC 
34.26/0.8359, Cancer 35.27/0.8591), this similarity is primarily due to 
most adherent cells exhibiting limited phase wrapping (Table 9). How
ever, the unwrapped training consistently outperformed wrapped 

Fig. 16. Comparison of reconstruction performance using wrapped versus unwrapped phase targets. Left panels show results for red blood cells (RBCs) and right 
panels show results for cancer cells. For each dataset, the top row corresponds to models trained with wrapped phase images (ground truth vs. generated), and the 
second row corresponds to models trained with unwrapped phase images. Orange boxes indicate representative cells selected for line profile analysis. The bottom 
graphs plot the phase distributions across the highlighted cells, comparing ground-truth wrapped, generated wrapped, ground-truth unwrapped, and generated 
unwrapped results. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 9 
Reconstruction performance comparison for diffusion models trained with 
wrapped versus unwrapped phase images on red blood cells and cancer cells 
from 200 test images (left: PSNR, right: SSIM).

Training data Red blood cells Cancer cells

Wrapped phase 33.23/0.7764 34.36/0.8225
Unwrapped phase 34.26/0.8359 35.27/0.8591
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training across both cell types. The line profile analysis clearly demon
strates the superior ability of unwrapped training to maintain phase 
continuity, making it the preferred approach for quantitative phase 
reconstruction applications requiring accurate optical path difference 
measurements.

4. Discussion

4.1. Comparison with alternative compact phase imaging technologies

Several compact phase imaging technologies have emerged as al
ternatives to traditional off-axis holography, each offering distinct ad
vantages and limitations. Quadriwave Lateral Shearing Interferometry 
(QLSI) provides single-shot quantitative phase imaging using a special
ized diffraction grating and is commercially available with excellent 
stability (Bon et al., 2009). However, QLSI suffers from reduced spatial 
resolution (typically 4 × lower than the sensor resolution) and requires 
expensive specialized hardware. Coded Wavefront Sensing achieves 
ultra-high spatial resolution through spatial light modulators and 
computational algorithms, but faces significant limitations in acquisi
tion speed due to the need for multiple sequential measurements (8–20 
acquisitions) and computationally intensive iterative reconstruction al
gorithms, making it impractical for real-time applications (Kazim et al., 
2025; Wang et al., 2017). Self-reference digital holography with LED 
illumination offers speckle-free imaging using everyday light sources, 
but requires complex optical setups with polarization-sensitive compo
nents and precise alignment procedures (Tahara, 2024).

In contrast, our unsupervised diffusion model approach offers several 
distinct advantages: Cost-effectiveness - utilizing standard Gabor ho
lography setups without specialized hardware, Real-time capability - 
single-shot acquisition with rapid inference once trained, Scalability - 
software-based improvements through advanced AI algorithms, and 
Data efficiency - robust performance even with limited training data 
through unsupervised learning. While our method may not achieve the 
absolute highest spatial resolution of coded wavefront sensing, it pro
vides an optimal balance of performance, practicality, and accessibility 
for quantitative phase imaging applications.

4.2. Spatial resolution considerations and trade-offs

In our study, an apparent gap exists between the theoretical resolu
tion defined by the optical system and the practical resolution observed 
in the reconstructed phase images. The theoretical transverse resolution 
of both off-axis and in-line configurations is determined by the diffrac
tion limit of the microscope objective (MO), expressed as δ ≈ 0.61λ/NA, 
and is further influenced by the pixel size of the image sensor. In prac
tice, however, the effective resolution differs depending on the acqui
sition geometry and reconstruction strategy. Off-axis DHM benefits from 
the Fourier-domain separation of real, twin, and zero-order terms, 
enabling it to approach its diffraction-limited resolution more closely. In 
contrast, in-line (Gabor) holography, while theoretically capable of a 
larger space–bandwidth product, suffers from twin-image overlap, 
background contributions, and speckle noise that degrade fine spatial 
details. Moreover, our AI-based reconstruction framework is trained 
using phase images from off-axis DHM as ground truth, which constrains 
the reconstructed outputs to the resolution ceiling imposed by the NA 
and magnification of the off-axis system.

Despite these limitations, our method achieves effective resolution 
sufficient for cellular morphology analysis and quantitative phase 
measurements, as demonstrated in red blood cell and cancer cell re
constructions. Importantly, this trade-off reflects a deliberate design 
choice: unlike hardware-intensive methods such as coded wavefront 
sensing, which can achieve ultra-high resolution through multiple 
measurements, our single-shot approach prioritizes simplicity and 
temporal resolution, making it particularly suitable for dynamic imaging 
scenarios where speed and cost-efficiency are critical. Future work will 

aim to bridge the resolution gap by incorporating deep-learning-based 
super-resolution strategies, physics-informed priors, and advanced 
denoising architectures with multi-scale training, thereby enhancing 
spatial fidelity while maintaining computational efficiency and robust
ness to noise.

4.3. Training versus inference: understanding the single-shot nature of our 
approach

A critical aspect of our methodology that requires clear explanation 
is the fundamental distinction between the training phase and the 
inference phase, which directly addresses why our approach can be 
considered a true single-shot system despite requiring off-axis data 
during training. During the training phase, our unsupervised diffusion 
model learns the complex mapping relationship between in-line holo
graphic patterns and their corresponding quantitative phase distribu
tions using unpaired datasets. This training process requires access to 
both in-line holograms (captured in cost-effective Gabor mode) and 
high-quality reference phase images (obtained from off-axis digital ho
lographic reconstruction). The off-axis measurements serve exclusively 
as reliable ground truth targets that enable the model to understand the 
relationship between simple holographic interference patterns and the 
underlying cellular phase information. This training phase represents a 
one-time investment in computational learning that establishes the 
model’s reconstruction capabilities.

The inference phase, however, operates fundamentally differently 
and represents the true operational mode of our system. Once training is 
completed, the model requires only a single in-line hologram as input to 
generate high-quality quantitative phase reconstructions. No off-axis 
measurements, complex optical alignments, or additional reference 
data are needed during actual use. This single-input, single-output 
operation definitively qualifies our approach as a single-shot system for 
practical deployment. The key advantage of this paradigm is that the 
computational complexity and data requirements are front-loaded into 
the training phase, while the operational phase remains remarkably 
simple and cost-effective. A single trained model can be deployed across 
multiple simple in-line holographic setups, transforming basic Gabor- 
mode systems into quantitative phase imaging platforms without 
requiring expensive off-axis infrastructure at each deployment location. 
This represents a fundamental shift from traditional approaches where 
each measurement location must be equipped with complex optical 
systems.

4.4. Advantages and limitations of the proposed approach

Our unsupervised diffusion model demonstrates several compelling 
advantages over existing phase reconstruction methodologies. The 
approach exhibits superior generalization capabilities across diverse 
cellular morphologies, as demonstrated by successful reconstruction of 
multiple cancer cell lines without requiring cell-specific training. The 
model’s robustness under varying propagation distances and its ability 
to maintain performance with limited training data highlight its prac
tical applicability in resource-constrained environments. Furthermore, 
the unsupervised learning framework eliminates the need for extensive 
labeled datasets, significantly reducing data preparation overhead 
compared to supervised approaches. The iterative denoising process 
inherent to diffusion models provides enhanced noise resilience and 
reconstruction stability compared to single-pass GAN-based methods. 
However, limitations include increased computational requirements 
during training and inference compared to traditional analytical 
methods, sensitivity to extreme defocus conditions particularly at high 
magnifications, and the current restriction to learned optical parameter 
ranges. The model’s performance degradation with wrapped phase data 
also indicates limitations in handling certain phase imaging scenarios. 
Despite these constraints, the balance of reconstruction quality, prac
tical deployment feasibility, and cost-effectiveness positions our 

S. Park et al.                                                                                                                                                                                                                                     Engineering Applications of Artiϧcial Intelligence 163 (2026) 112970 

23 



approach as a viable solution for quantitative phase imaging 
applications.

4.5. Future directions and potential improvements

Several promising avenues exist for enhancing the capabilities and 
applicability of our diffusion-based phase reconstruction framework. 
Integration of physics-informed constraints into the diffusion process 
could improve reconstruction accuracy by incorporating known optical 
propagation principles, potentially addressing current limitations with 
extreme defocus conditions and wrapped phase handling. Multi-scale 
training strategies using different magnifications and imaging parame
ters could enhance generalization across diverse optical configurations, 
reducing the need for system-specific retraining. Advanced attention 
mechanisms and transformer architectures could improve the model’s 
ability to capture long-range spatial dependencies in phase distributions, 
potentially enhancing resolution capabilities. Real-time optimization 
through model compression techniques, knowledge distillation, and 
specialized hardware acceleration could reduce inference times to 
enable true real-time applications. Additionally, extending the frame
work to handle 3D phase reconstruction and multi-wavelength imaging 
could broaden its applicability to advanced holographic microscopy 
techniques. Incorporation of uncertainty quantification mechanisms 
would provide confidence measures for reconstruction quality, enabling 
automated quality control in clinical applications. Finally, development 
of domain adaptation strategies could facilitate rapid deployment across 
different biological specimens and imaging systems without requiring 
extensive retraining, making the technology more accessible for diverse 
research and clinical environments.

5. Conclusion

This study introduces the first unsupervised diffusion model for 
automated phase image reconstruction from single-shot in-line holo
grams, addressing the fundamental twin image problem that has long 
limited Gabor holography applications. Our computational framework 
successfully eliminates the need for expensive off-axis optical setups 
while maintaining reconstruction fidelity comparable to traditional 
complex systems. The key breakthrough lies in enabling effective 
training on unpaired hologram-phase datasets through integrated cycle- 
consistency and denoising modules. This approach demonstrates supe
rior performance compared to existing unsupervised methods (Cycle
GAN, UNIT) and maintains exceptional reconstruction quality even with 
severely limited training data—a critical advantage over supervised 
approaches that suffer significant degradation under data-constrained 
conditions. Particularly notable is the model’s remarkable generaliza
tion capability across diverse biological specimens. The framework 
successfully reconstructs phase images from various cancer cell mor
phologies not encountered during training and maintains robustness 
across different propagation distances, demonstrating its practical 
applicability in real-world imaging scenarios where precise optical 
control may be challenging. Our approach represents a paradigm shift 
from hardware-based to computational solutions for quantitative phase 
imaging. By transforming low-cost, simple optical measurements into 
high-quality phase reconstructions through advanced AI algorithms, this 
work democratizes access to quantitative phase microscopy for 
resource-constrained environments and real-time applications. This 
computational breakthrough opens new possibilities for compact digital 
holography systems in biomedical research, clinical diagnostics, and 
field applications, where cost-effectiveness, portability, and ease of 
operation are paramount while maintaining the quantitative accuracy 
required for meaningful biological analysis.
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