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Single-shot digital holography in Gabor mode offers cost-effective quantitative phase imaging but suffers from
the fundamental twin image problem, where real and conjugate images are inherently superimposed, severely
limiting phase reconstruction accuracy. Traditional iterative phase retrieval methods require computationally
expensive multiple propagations, while off-axis holography demands complex optical setups with precise
alignment. We present the first unsupervised diffusion model for automated phase image reconstruction from
single-shot in-line holograms, eliminating both twin image artifacts and the need for expensive off-axis config-
urations. Our framework integrates cycle-consistency and denoising modules to enable training on unpaired
hologram-phase image datasets, learning the mapping between low-cost in-line measurements and high-quality
phase distributions without requiring labeled data pairs. Comprehensive evaluation on diverse biological spec-
imens demonstrates that our approach significantly outperforms conventional unsupervised methods, achieving
superior Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) values for both red
blood cells and cancer cells. Critically, the model maintains exceptional performance even with limited training
data, consistently outperforming supervised learning approaches under data-constrained conditions. The
framework exhibits remarkable generalization capabilities, successfully reconstructing phase images from ho-
lograms captured at different propagation distances and processing various cancer cell types not included in
training data. This computational breakthrough enables accurate, scalable, and hardware-efficient quantitative
phase imaging, democratizing access to high-quality phase microscopy for resource-constrained environments
while maintaining reconstruction fidelity comparable to complex off-axis systems.

1. Introduction 1993; Latychevskaia, 2019; Latychevskaia and Fink, 2007; Nakamura

et al., 2007).

The single-shot holography technique was first proposed by Gabor in
1948 (Gabor, 1948). Since it uses fewer optical components and is
relatively easy to install, single-shot holography with Gabor configura-
tion without a separate reference beam has been applied to various
fields, including biological applications (Moon and Javidi, 2008; Xu
et al., 2001) and optical authentication (Chen, 2019). In Gabor mode, as
originally identified by Gabor, the real and conjugate (twin) images are
inherently superimposed within the recorded hologram—a fundamental
characteristic that persists in both analog and digital implementations.
To decouple these overlapping components from a single acquisition,
iterative phase retrieval methods have been introduced, leveraging
measurement diversity and prior knowledge of the sample (Koren et al.,

However, to reconstruct the actual phase value, light must be
propagated back and forth several times, so the time consumption is
large. Off-axis holography introduces a slight angular offset between the
object and reference waves, which enables the separation and removal
of the conjugate image in the frequency domain, thereby allowing ac-
curate extraction of quantitative phase information from the sample
(Cuche et al., 1999; Javidi et al., 2021; Kemper and von Bally, 2008;
Rappaz et al., 2005). Moreover, off-axis holography enables the acqui-
sition of label-free phase images of living cells suspended in a liquid
medium, while minimizing radiation exposure. The phase information
can be retrieved from a single hologram without the need for mechanical
scanning, thereby facilitating three-dimensional (3D) reconstruction of
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the specimen. Digital holography is used to study red blood cells
(Bhabhor et al., 2024; Jaferzadeh and Moon, 2016; Jaferzadeh et al.,
2018; Rappaz et al., 2008; Yi et al., 2015), white blood cells (Ugele et al.,
2018), cancer cells (Lam et al., 2018; Pirone et al., 2022; Roitshtain
et al., 2017), and cardiomyocytes (Ahamadzadeh et al., 2022; Shaked
et al., 2010).

Despite the information from holography being very useful, many
biological environments still present certain challenges in the wide
applicability of off-axis holography. To obtain an image with perfect
phase value through numerical reconstruction, off-axis holography must
be equipped with a precise optical environment. Prior to recording ho-
lograms of biological samples, the optical paths of the reference and
object waves must be carefully aligned. Any modifications introduced in
the object arm must be correspondingly adjusted in the reference arm to
maintain proper interference conditions. The other challenging steps in
holographic image reconstruction are phase unwrapping (Herraez et al.,
2002; Pritt and Shipman, 1994; Quiroga and Bernabeu, 1994), and
digital correction of the phase aberrations (Colomb et al., 2006). While
phase unwrapping algorithms can be applied to reconstruct continuous
phase maps from wrapped phase images, these additional processing
steps introduce computational complexity and potential sources of
error, particularly in low signal-to-noise ratio conditions or when
dealing with complex biological structures. Without proper application
of these correction algorithms, it becomes challenging to extract accu-
rate quantitative phase information from the sample.

1.1. Previous work and limitations

Recently, various state-of-the-art studies have produced meaningful
results by applying deep learning to digital holography (Barbastathis
et al., 2019; Moon, 2022). Several studies have focused on cellular
analysis applications, including spatio-temporal cellular identification
and pathological diagnosis (O’Connor et al., 2020; O’Connor et al.,
2021), red blood cell segmentation and classification (Kim et al., 2022),
and multi-depth phase-only hologram generation using convolutional
neural networks (Yan et al., 2024). Furthermore, extensive research has
been conducted on deep learning approaches for holographic phase
reconstruction, with numerous studies demonstrating the potential of
neural networks in recovering phase information from holographic data.
Dardikman-Yoffe et al. (2020) developed PhUn-Net, a multi-layer
encoder-decoder residual convolutional neural network specifically for
phase unwrapping in biological cells, demonstrating robustness across
various cell types. Jaferzadeh and Fevens (2022) proposed Hol-
oPhaseNet using conditional generative adversarial networks for auto-
mated hologram reconstruction, achieving high accuracy in phase
recovery tasks. Park et al., 2023, 2024 developed supervised models for
both automated quantitative phase reconstruction and super-resolution
enhancement in digital holography, successfully achieving high recon-
struction quality. Rivenson et al. (2019) introduced a pioneering su-
pervised deep learning framework for phase recovery and holographic
reconstruction using neural networks, demonstrating remarkable per-
formance in eliminating twin-image artifacts and reconstructing phase
information from single holograms. These supervised approaches have
shown impressive capabilities in various holographic imaging
applications.

However, the majority of these deep learning approaches for holo-
graphic phase reconstruction have been developed within the super-
vised learning framework, each with inherent limitations that constrain
their practical deployment. PhUn-Net required extensive paired datasets
of wrapped and unwrapped phase images for training, while Hol-
oPhaseNet necessitated substantial labeled training data and remained
limited to specific optical configurations. The supervised models by Park
et al. suffered from poor generalization when training data was limited
and required computationally expensive data collection processes.
Similarly, Rivenson et al.’s approach, despite its remarkable perfor-
mance, required extensive paired training datasets, making it

Engineering Applications of Artificial Intelligence 163 (2026) 112970

challenging to adapt to new sample types or imaging conditions without
retraining.

The reliance on supervised learning creates several fundamental
challenges for practical implementation. First, acquiring large-scale
paired datasets is labor-intensive and costly, particularly for biological
applications where ground truth phase images must be obtained through
complex off-axis holographic setups. Second, supervised models typi-
cally exhibit poor generalization to sample types not included in the
training data, limiting their versatility across diverse biological speci-
mens. Third, the requirement for extensive labeled data becomes pro-
hibitive when dealing with limited data scenarios, which are common in
specialized biological research.

While some unsupervised approaches have been proposed, they face
significant limitations. Li et al. (2020) demonstrated unsupervised
auto-encoder methods for single-shot digital in-line holography recon-
struction, but their iterative approach requires multiple back-and-forth
light propagations, resulting in substantial computational time for
generating phase images from single holograms. Similarly, Manisha
et al. (2023) showed twin image removal using random
illumination-based recording with unsupervised auto-encoders, but this
method also relies on iterative processing that significantly slows down
single-shot phase reconstruction. Yin et al. (2020) developed a
CycleGAN-based framework for digital holographic reconstruction using
unpaired data, incorporating cycle consistency loss and generative
adversarial networks. While their approach demonstrated robustness
against  displacement aberrations and defocusing effects,
CycleGAN-based methods typically suffer from training instability and
mode collapse issues. Zhang et al. (2021) introduced PhaseGAN, a
generative adversarial network-based approach for unpaired phase
retrieval that incorporates physics of image formation. However, con-
ventional unsupervised techniques like CycleGAN (Zhu et al., 2017),
UNIT (Liu et al., 2017), and even PhaseGAN often struggle with the
complex biological holographic data characteristics, particularly when
dealing with diverse cellular morphologies simultaneously, highlighting
the need for more robust unsupervised learning frameworks specifically
designed for holographic phase reconstruction challenges.

1.2. Contribution

In this study, we present a groundbreaking computational frame-
work that, for the first time in the field of digital holography, employs an
unsupervised diffusion model for automated phase image reconstruction
from single-shot in-line holograms recorded in cost-effective Gabor
mode. Our approach addresses a fundamental challenge in holographic
imaging: achieving high-quality quantitative phase reconstruction from
low-cost, simple optical setups without requiring paired training data.
The trained model operates as a true single-shot system, enabling rapid
phase image acquisition by simply inputting an in-line hologram, which
dramatically improves computational efficiency compared to traditional
iterative phase retrieval methods that require multiple back-and-forth
light propagations. This breakthrough eliminates the need for complex
and costly off-axis holographic systems while maintaining reconstruc-
tion fidelity, making quantitative phase imaging accessible for resource-
constrained environments and real-time applications.

Our unsupervised diffusion-based approach demonstrates excep-
tional robustness and generalization capabilities that surpass existing
methods. The framework exhibits remarkable adaptability across vary-
ing optical conditions, successfully reconstructing phase images from
holograms captured at different propagation distances beyond the
training range, addressing practical scenarios where precise distance
control is challenging. Furthermore, the model shows superior gener-
alization to diverse cellular morphologies, effectively processing various
cancer cell types that were not included in the training dataset, along-
side the original red blood cells and ovarian cancer cells used for
training. Through comprehensive experimental validation, we demon-
strate that our method significantly outperforms conventional
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unsupervised techniques such as CycleGAN and UNIT while maintaining
exceptional performance even with limited training data. This combi-
nation of speed, robustness, and generalization capability represents a
paradigm shift in holographic phase reconstruction, potentially
democratizing access to high-quality quantitative phase microscopy for
biological research and clinical applications.

The contributions of the proposed scheme can be summarized as
follows:

1. This study presents the first computational framework in digital
holography that pioneers the use of an unsupervised diffusion model
for automated phase image reconstruction from single-shot Gabor
holograms, marking a significant advancement in data-driven phase
reconstruction for digital holography.

2. Our approach achieves hardware-software co-optimization,
enabling cost-effective quantitative phase imaging by transforming
simple in-line holographic measurements into high-quality phase
images. This allows off-axis-equivalent reconstruction performance
from a significantly simpler and more compact optical system,
thereby reducing complexity and cost while preserving quantitative
fidelity.

3. The framework demonstrates superior reconstruction quality and
robustness compared to conventional unsupervised methods such as
CycleGAN and UNIT, while achieving exceptional performance even
with limited training data, consistently outperforming supervised
learning approaches under data-constrained conditions.

4. The trained model operates as a true single-shot system with rapid
inference capabilities, dramatically outperforming traditional itera-
tive phase retrieval methods in computational efficiency while
maintaining high reconstruction fidelity for real-time applications.

5. The method exhibits exceptional generalization capabilities, suc-
cessfully reconstructing phase images from holograms captured at
different propagation distances and processing various cancer cell
types not included in the training dataset, demonstrating remarkable
adaptability to new optical conditions and cellular morphologies.

2. Method
2.1. Sample preparation

Peripheral blood samples were collected from three healthy donors
via venipuncture and immediately mixed with HEPA buffer. The diluted
blood was then applied onto imaging slides. All procedures were con-
ducted in compliance with institutional guidelines and regulations
(DGIST-180713-BR-012-01) and approved by the DGIST bio-safety
committee and IRB in Korea. Experiments were completed within a
few hours of collection, after which the samples were discarded
correctly. For cancer cell imaging, the ovarian cancer cell line (SK-OV-3,
HTB-77, ATCC) with epithelial morphology was used. Cells were
maintained in 35 mm dishes with low walls and a polymer coverslip base
(Ibidi 80136). They were cultured under standard conditions at 37 °C
with 5 % CO3 in a humidified incubator. The growth medium consisted
of BI RPMI 1640 (ATCC 30-2001), supplemented with 10 % fetal bovine
serum (ATCC 30-2020).

2.2. In-line (gabor) and off-axis digital holographic imaging

Holographic imaging was carried out using a conventional digital
holographic microscopy (DHM) setup, a configuration that is widely
recognized and validated in prior studies (Cuche et al., 1999). The op-
tical system was equipped with two Leica microscope objectives: a 20 x
objective with numerical aperture 0.55 and a 40 x objective with nu-
merical aperture 0.80, providing pixel sizes of 0.2849 pm and 0.1441
pm, respectively. Coherent illumination was supplied by a red diode
laser operating at 666 nm wavelength. Image detection was accom-
plished using a CMOS camera with a sensor resolution of 1900 x 1200
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pixels and individual pixel dimensions of 5.86um x 5.86 pm. The ho-
logram size was cropped to 1024 x 1024 pixels to optimize computa-
tional efficiency. All acquisitions were performed in a controlled
laboratory environment with temperature stabilization to minimize
thermal drift and mechanical vibrations.

Fig. 1 illustrates the general layout of in-line and off-axis digital
holographic microscopy and demonstrates the fundamental differences
between these two approaches. In our optical setup, the microscope
objective (MO) is positioned immediately after the specimen to collect
and magnify the diffracted object wave. For in-line hologram acquisi-
tion, only the object wave was recorded through its interference with the
unscattered illumination. The off-axis holography realized using a
Mach-Zehnder interferometer, introduces a slight angular separation
between the object and reference waves. This angular separation enables
spatial frequency domain separation of the real image, twin image, and
zero-order terms (Cuche et al., 1999). While off-axis holography pro-
vides twin image-free reconstruction, it requires precise optical align-
ment, beam path matching, and additional optical components
including beam splitters and mirrors, resulting in significantly higher
optical complexity and cost compared to the simplified in-line approach.
To facilitate experiments, our system was designed to allow rapid
switching between in-line and off-axis modes simply by operating the
beam shutter, enabling efficient data collection under identical imaging
parameters. It should be noted that while a basic digital holographic
microscopy (DHM) without an MO offers simplicity, its transverse res-
olution is fundamentally limited by the sensor pixel size and recording
geometry, typically several micrometers. By contrast, incorporating an
MO enables the reconstructed phase images to achieve a resolution
approaching the diffraction limit of the imaging system, allowing
transverse resolution below 1 pm. As established in prior work (Cuche
et al., 1999), MO-based DHM can be regarded as a form of image ho-
lography, since the hologram is recorded from the magnified interme-
diate image produced by the MO rather than directly from the object.

Phase and amplitude images were reconstructed from off-axis holo-
grams using established numerical propagation methods following the
framework described by Cuche et al. (1999). Detailed mathematical
formulations and implementation parameters of the reconstruction
procedure are provided in the Supplementary Material S1. The recon-
struction yields both amplitude images and phase images. Since the
obtained phase values are typically wrapped within the [-n, ©] interval,
quality-guided phase unwrapping algorithms (Herrdez et al., 2002) were
applied when phase variations exceeded 27 to reconstruct accurate
quantitative phase maps. The resulting phase images serve as reliable
reference data, validated through established reconstruction algorithms
and system specifications (Cuche et al., 1999).

For transparent biological specimens such as living cells, phase in-
formation typically provides superior contrast and quantitative data
compared to amplitude, as cellular structures exhibit minimal absorp-
tion but significant refractive index variations. Phase information pro-
vides quantitative optical path difference measurements directly related
to sample thickness and refractive index variations, enabling calculation
of important cellular parameters including dry mass, projected area, and
cell volume (Roitshtain et al., 2017). Therefore, in this study, we focused
only on phase reconstruction, which is most important for quantitative
biological imaging applications, in model training.

2.3. Data generation

For model training, we collected two types of optical data: in-line
holograms recorded in Gabor mode and high-quality phase images ob-
tained from off-axis digital holographic microscopy. This training
strategy enables our unsupervised diffusion model to learn the mapping
relationship between cost-effective in-line holographic measurements
and accurate quantitative phase information without requiring paired
datasets. The off-axis phase images serve as reliable reference targets
during the training process, providing ground truth phase information
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(b) Off-axis holography
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Fig. 1. General layout of (a) in-line and (b) off-axis digital holographic microscopy. (c) Sample images from in-line holography showing recorded holograms and
their corresponding FFT spectra for red blood cells and cancer cells. (d) Sample images from off-axis holography showing recorded holograms, FFT spectra, and
reconstructed amplitude and phase images. The phase distributions include quantitative intensity bars indicating the range of reconstructed phase values in radians.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

with high accuracy validated by established reconstruction algorithms
and system specifications. Importantly, once the model is trained, it
operates as a true single-shot system requiring only a single in-line ho-
logram input to generate the corresponding phase image, eliminating
the need for off-axis measurements during inference.

In-line and off-axis holograms of red blood cells and cancer cell lines
were acquired using digital holographic microscopy (DHM) (Fig. 2). Off-
axis holograms were captured via a Mach-Zehnder interferometric DHM
setup and reconstructed into phase images through numerical propa-
gation based on Fresnel diffraction. In-line holograms were obtained by
blocking the reference beam in the same system, thus recording only the
object wave. The holograms were recorded at 1024 x 1024 pixels, while
phase images reconstructed from off-axis holograms had a resolution of
900 x 900 pixels due to the circular filtering process that isolates the
useful diffraction information and eliminates noisy edge regions. The
reconstructed images covered approximately 129.68 pm x 129.68 pm

for red blood cells imaged at 40 x magnification and 256.38 pm x
256.38 pm for cancer cells imaged at 20 x magnification. To ensure
consistent region of interest for model training, the in-line holograms
were cropped to 900 x 900 pixels to match the phase image dimensions.
We recorded 900 holograms of red blood cell samples, and 750 holo-
grams of cancer cells. Using data augmentation, such as rotation and
flip, we created datasets containing 3600 images of red blood cell and
3000 images of cancer cells, respectively. The test dataset consisted of
images excluded from the training process and was used solely to
evaluate the model’s performance. The test dataset was used by select-
ing 200 images from each sample’s dataset, with the rest all being used
as the training dataset.

2.4. Unsupervised diffusion model for phase reconstruction

This study presents an unsupervised diffusion model that directly
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Fig. 2. Representative images of red blood cells and cancer cells used for model training. Each in-line hologram and corresponding phase image have a resolution of
900 x 900 pixels, covering an area of approximately 129.68 ym x 129.68 pm for red blood cells and 256.38 pm x 256.38 pum for cancer cells. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)

reconstructs quantitative phase images from in-line holograms, solving
the twin image problem without requiring complex off-axis optical
configurations. The model utilizes two types of optical data during
training: in-line holograms and clean phase images obtained from off-
axis holography. Based on Ozbey et al. (2023), this approach enables
unsupervised learning where datasets do not require direct correspon-
dence between specific hologram-phase image pairs. The model learns

the general relationship between holographic patterns and phase dis-
tributions using the entire dataset. The computational framework con-
sists of two interconnected networks. First, a cycle-consistency module
learns bidirectional translation between hologram and phase domains
using cycle-consistency loss. Second, a diffusion module performs iter-
ative noise removal to generate high-quality phase images or holograms
by progressively refining the reconstruction over multiple steps.
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The model is trained for phase reconstruction, but to implement
unsupervised learning, both hologram-to-phase and phase-to-hologram
transformations are learned during training. However, the primary
function of the trained model is phase reconstruction from real optical
holograms. The phase-to-hologram transformation serves merely as a
computational mechanism that generates hologram-like patterns
consistent with the input holographic data to enable unpaired training.
Once training is completed, the model operates as a true single-shot
system that generates corresponding phase images from single in-line
holograms. The trained diffusion module, learned for generating phase
images from in-line holograms, reconstructs phase images from actual
captured in-line holograms.

This approach addresses several practical optical challenges by
eliminating the need for precise beam alignment required in off-axis
systems and reducing optical complexity and cost by removing addi-
tional mirrors and beam splitters. The innovation lies in integrating
computational techniques to solve a specific optical problem that has
limited the practical deployment of in-line holography, while main-
taining quantitative phase accuracy comparable to established optical
methods.

(a) Phase to In-line hologram
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2.4.1. Model architecture

2.4.1.1. Cycle-consistency module. The cycle-consistency module ad-
dresses a fundamental challenge in unsupervised learning for holo-
graphic reconstruction: how to learn meaningful mappings between in-
line holograms and phase images without paired training data. This
module establishes bidirectional translation between the hologram
domain and phase domain by enforcing a mathematical constraint
known as cycle-consistency.

Fig. 3 shows the process of the cycle-consistency module. The orig-
inal phase images are obtained from off-axis holography, while the
original in-line holograms are acquired from in-line holography. The
module operates on the principle that if a hologram is transformed into
the phase domain and then back into the hologram domain, the result
should closely match the original hologram. Similarly, if a phase image
is transformed into the hologram domain and back to the phase domain,
it should return to its original form. This bidirectional constraint pre-
vents the model from learning arbitrary or physically meaningless
mappings between the two domains. The cycle-consistency module

comprises two sets of generator—discriminator pairs, (GZ,DZ) and

(G{J ,Dg) (Fig. 2). The G‘; (hologram-to-phase generator) transforms in-
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Fig. 3. Overview of the process for training the cycle-consistency module. The cycle-consistency module consists of two generators and two discriminators, enabling
bidirectional image translation between two domains: the in-line hologram and the phase image. (a) The process of generating an in-line hologram using an original
phase image and generating a corresponding phase image for cycle consistency learning. (b) The process of generating a phase image using an original in-line
hologram and generating a corresponding in-line hologram for cycle consistency learning. The discriminators evaluate the quality of the generated phase images

and in-line holograms by distinguishing them from real images.
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line holograms into phase images, and the Gg (phase-to-hologram
generator) performs the reverse transformation (Zhu et al., 2017).

—G () 6))

h=G{(p) @

where, h and p represent the original in-line hologram and phase image,

respectively, while p and h denote the phase image and in-line hologram
generated by the cycle-consistency module. The generators of the cycle-
consistency module used a ResNet backbone with two down-sampling,
six residual, and two up-sampling blocks (He et al., 2016). The dis-
criminators distinguish between generated images and real images for
each domain. Discriminators help generators create images similar to
actual images in each domain. The discriminators used five blocks with
convolutional layer, batch normalization, and LeakyReLU.

To achieve unsupervised learning, the cycle-consistency module
enforces round-trip consistency by transforming the generated phase
images (by equation (1)) back to the in-line hologram domain and the
generated in-line holograms (by equation (2)) back to the phase image
domain through the corresponding generators (Zhu et al., 2017):

p=Gi(h) 3)

C))

where, p and h denote the phase image and in-line hologram generated

by the cycle-consistency module, while;) and h are the corresponding

(a) Phase image reconstruction

Engineering Applications of Artificial Intelligence 163 (2026) 112970

reconstructions projected back to the original domain through the
generator.

2.4.1.2. Denoising module. The denoising module represents the core
reconstruction engine of the proposed framework, designed to generate
high-quality images through an iterative refinement process in both
directions: from in-line holograms to phase images and from phase im-
ages to in-line holograms. This bidirectional capability is essential for
the overall framework to function effectively, as both transformations
work synergistically to enable robust phase reconstruction from single-
shot holographic measurements.

Fig. 4 shows the process of the denoising module. The module
operates through two distinct processes: a forward process and a reverse
process. The original phase images are obtained from off-axis hologra-
phy, while the original in-line holograms are acquired from in-line ho-
lography. In the forward process, both phase images and in-line
holograms are progressively corrupted by adding Gaussian noise over
multiple timesteps following a predefined noise schedule, until they are
transformed into pure random noise. This forward process systemati-
cally destroys the original image information by gradually increasing
the noise level at each timestep. The reverse process learns to invert this
corruption by training denoising networks to remove noise step by step,
recovering the original information in each respective domain. Starting
from pure noise, the reverse process iteratively refines the data through
multiple denoising steps, gradually reconstructing either clean phase
images or in-line holograms. This reverse process effectively learns the
complex statistical relationships present in both holographic and phase
data.

The forward process systematically corrupts clean images by

(b) In-line hologram reconstruction
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Fig. 4. Overview of the process for training the denoising module. The denoising module is designed to iteratively refine noisy images and reconstruct high-quality
phase images through a step-by-step denoising process. This module comprises two sets of generator—discriminator pairs. (a) The process of reconstructing a phase
image. (b) The process of reconstructing an in-line hologram. Training is divided into a forward process, where Gaussian noise is progressively added to the phase
image, and a reverse process, where the model iteratively denoises the input to reconstruct the original phase information.
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progressively adding Gaussian noise over T timesteps, as illustrated in
Fig. 4. For phase image reconstruction (Fig. 4a), the process begins with
a original phase image p and gradually transforms it through interme-
diate noisy states p..1, p; until reaching pure Gaussian noise pr at time-
step T. Similarly, for in-line hologram reconstruction (Fig. 4b), the
process starts with an original in-line hologram h and progresses through
noisy intermediate states h.1, h; to reach hr.

The mathematical formulation of this corruption process follows the
diffusion framework described by Ho et al.:

XD = TP + Ve

where, t € {1,2,...,T}, xgi‘j) represents either the noisy phase image p, or
noisy in-line hologram h, at timestep t and pixel coordinates (i, j), and

) ~ N(0,1) (5)

() is Gaussian noise sampled independently for each pixel. In subse-
quent equations, the coordinates (i, j) will be omitted. The noise vari-
ance schedule g, controls the amount of noise added at each timestep,
following an exponentially scaled schedule (Song et al., 2020):

-1
Bi=1—¢e" mmT’O 5(Brax ~Frmin) 2o 72 6)

where, fnin and fmax control the rate of noise variance increase through
an exponentially scaled schedule. We set T = 4, fin = 0.1, and fax =
20.

The reverse process learns to systematically remove noise and
reconstruct clean images from the corrupted data generated in the for-
ward process. As illustrated in Fig. 4, this process operates in both di-
rections: reconstructing phase images from noisy inputs (Fig. 4a) and
reconstructing in-line holograms from noisy inputs (Fig. 4b).

The reverse process employs trainable neural networks to iteratively
denoise images step by step. As shown in the figures, the denoising
module comprises two sets of generator-discriminator pairs: (Gj, Dj)) for
phase image reconstruction and (G4,DY) for in-line hologram recon-
struction. The generators take as input the noise-added image at time-
step t along with conditioning information from the cycle-consistency
module.

For phase image reconstruction (Fig. 4a), the generator G} receives
the noisy phase image p; and the in-line hologram [ generated by the
cycle-consistency module G{/, producing a denoised phase image (Ho
et al., 2020):

P =Gl (pi, h,t) @)

Similarly, for in-line hologram reconstruction (Fig. 4b), the gener-
ator GY takes the noisy in-line hologram h, and the phase image p from
the cycle-consistency module G; (Ho et al., 2020):

W =Gy(he.p,t) ®)

The generators employ U-Net architectures with seven down-
sampling blocks, one channel-wise self-attention block, and seven up-
sampling blocks (Ronneberger et al., 2015; Woo et al., 2018). A learn-
able temporal embedding corresponding to timestep t is incorporated as
channel-specific bias into the feature maps within each sub-block to
enable temporal conditioning.

To obtain the image at timestep t-1, posterior sampling (PS) is
applied using the denoised predictions and the noisy input from the
previous timestep (Kingma and Welling, 2013; Ozbey et al., 2023; Xiao
et al., 2021):

Xeo1 = (X, X) + Pee (C)]
N VO 1ﬂt , \/_‘(1 —01)~ — 01
(X, X)) = 1-a 1-a tnﬁt 1 —a B (10)

where X, is the generated in the previous timestep, respresented by he or
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P: and X is the denoised image, corresponding to h' or p'. X,_1 is the
image with one step of noise removed, resulting in ﬁt,l or p,1 as the
output of timestep t. @y =1 —f, & = [[,_j91,. g and & ~ N(0,1), which
is sampled noise independently same as the forward process, except for
the last denoising step where ¢ = 0.

The discriminator of the denoising module distinguishes between the
t-1 image created from the model’s predictions and calculations, and the
t-1 image created by adding noise from the forward process. Each
discriminator was composed of six sequential blocks, with each block
containing two convolutional layers followed by a two-fold down-sam-
pling operation. To enable temporal conditioning, a learnable temporal
embedding was added to the feature maps within every block.

2.4.2. Model objective

The training objective operates through alternating discriminator
and generator optimization stages, following the systematic process
illustrated in the training flowchart (Fig. 5). The training begins with
unpaired input data consisting of phase images p and in-line holograms
h, which serve as the foundation for all subsequent computations.

Random timesteps t are independently selected for each domain,
initiating the forward diffusion process that generates noisy sample pairs
Pt Pe—1 and hy, h;; according to Equation (5). Simultaneously, the
generators within the cycle-consistency module establish cross-domain
mappings: generator G;’ transforms phase image p into hologram h
following Equation (2), while generator Gg converts hologram h into
phase image p using Equation (1). These cross-domain translations
provide essential conditioning information for the subsequent denoising
operations.

The generators within the denoising module then process the noisy
inputs with cross-domain conditioning. Generator G} receives noisy

phase image p; along with cycle-generated hologram n, producing
denoised phase image p’ through Equation (7). Concurrently, generator
GY processes noisy hologram h, with cycle-generated phase image p,
outputting denoised hologram k' via Equation (8). These denoised out-
puts undergo posterior sampling calculations following Equation (9) to
generate p,_; and Et,l, representing images with one timestep of noise
removed.

During discriminator training (Fig. 5a), two distinct types of adver-
sarial evaluation occur simultaneously. The discriminators within the
cycle-consistency module assess the realism of cross-domain translations
by distinguishing between real images and cycle-generated outputs. The
hologram discriminator within the cycle-consistency module optimizes
(Goodfellow et al., 2014):
LD::[E{flog<DfZ(h))] +[E[flog(1 Di(R ))] an
while the phase discriminator within the cycle-consistency module op-
timizes:

LDZ:[E[—log<D$(p))] +E[—log<l—DZ@)>] 12)

The discriminators within the denoising module evaluate the
denoising progression by comparing authentic temporal sequences
against generated ones. The hologram discriminator within the denois-
ing module distinguishes between real progression h;, h, ; and gener-

ated progression h, h._1 (Ozbey et al., 2023):

Ly =E[ — log(Di(t, b, hi_1))] + E[ — log(1 —Dfi(t.he, he 1)) 13)

Similarly, the phase discriminator within the denoising module
optimizes:

LDI; = [E[ - log(Dg(tvptﬁptfl))} + IE[ - lOg(l

Generator training follows identical forward processing but focuses

7D5(t=pt7p\t—l))] a4
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Fig. 5. Flowchart illustrating the training process of the unsupervised diffusion model for holographic phase reconstruction. (a) Training the discriminators and (b)
training the generators through alternating optimization stages. The light gray boxes represent the unpaired input data: phase images p and in-line holograms h,
which do not require direct correspondence. The blue boxes indicate the forward process that progressively adds noise to generate p, and h, at timestep t. The green
boxes represent the reverse process that iteratively removes noise to reconstruct clean images. The brown boxes denote the cycle-consistency module operations that
establish bidirectional mappings between hologram and phase domains. The gray boxes show objective function calculations including adversarial losses and cycle-
consistency loss. The training alternates between discriminator optimization (a) and generator optimization (b) through gradient descent steps, repeating until
convergence. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

on optimizing generator performance against the trained discriminators
(Fig. 5b). The generators within the cycle-consistency module receive
adversarial feedback designed to fool their respective discriminators
within the cycle-consistency module (Goodfellow et al., 2014):

L, =E[ ~ log (Dfi()] + E[ ~ log (D} 7))

The generators within the denoising module optimize their adver-
sarial performance against the discriminators within the denoising
module, aiming to produce temporally consistent denoising

(15)

progressions (Ozbey et al., 2023):

Lo, = E[ — log(D}(t,pi,Pe1))] + E[ — log(Dff (¢, e, A )]

The cycle-consistency constraint provides crucial physical consis-
tency by measuring reconstruction errors across multiple pathways. The
cycle reconstruction pathway evaluates round-trip translations where

(16)

phase images p are converted to holograms h and back to phase images;),
while holograms h undergo conversion to phase images p and back to
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holograms h. The consistency with denoised outputs ensures that the
generators within the denoising module maintain fidelity to the original
inputs, where h' represents the denoised hologram output from the
denoising module’s generator G5 and p' represents the denoised phase
image output from the denoising module’s generator G5.The complete
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Loe =E[(Ip —ply + [~ H], ) + (o~ Pl +1n—1,)] an

The integrated training objective combines these components
through weighted loss terms. Generator training optimizes:

cycle-consistency loss encompasses (Ozbey et al., 2023; Zhu et al., Lg =ML, + 4oL, + AsLoye (18)
2017):
while discriminator training minimizes:
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Fig. 6. Inference process that generates a phase image from a single in-line hologram and Gaussian random noise sample. (a) In-line hologram acquisition using a
simplified optical setup where the sample is directly illuminated by laser light through a microscope objective and recorded by a CCD camera, producing a single-shot
in-line hologram that serves as conditioning input for the model. (b) Model inference showing the iterative denoising process from timestep T to timestep 0. The
trained generator G} progressively denoises random Gaussian noise pr by conditioning on the input in-line hologram h through concatenation operations. At each
timestep, the generator produces a denoised phase image p’, which undergoes posterior sampling to generate p, ; with one step of noise removed. This iterative
process continues until timestep 0, producing the final denoised phase image p, that effectively resolves the twin image problem inherent in the original in-

line hologram.
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L3 =1 (Lop + Loy ) + Ao (Log + Loy ) 19)

The training alternates between these stages through gradient
descent optimization with loss weights 1; = 13 = 1 and A3 = 0.5, ensuring
balanced adversarial training while maintaining cycle-consistency con-
straints essential for robust holographic phase reconstruction.

2.4.3. Model inference

Once training is completed, the model operates as a true single-shot
system that requires only an in-line hologram to reconstruct quantitative
phase images, as illustrated in Fig. 6. This represents a fundamental
departure from the training requirement where off-axis holograms were
necessary to provide reference phase information. The critical distinc-
tion is that off-axis holography is used exclusively during the one-time
training process to establish reliable phase reconstruction capabilities,
after which the trained model can process any new in-line hologram
without requiring additional off-axis measurements.

The inference process begins with a single captured in-line hologram
h acquired through the simplified optical setup shown in Fig. 6a and
random Gaussian noise pr initialized at timestep T, as demonstrated in
the inference flowchart (Fig. 6b). The trained generator Gg within the
denoising module processes the concatenated input consisting of the
noisy phase sample p, and the conditioning in-line hologram h, pro-
ducing a denoised phase image p' through Equation (7). This denoised
output undergoes posterior sampling following Equation (9) to generate
D:_1, representing a phase image with one timestep of noise removed.
The timestep counter is decremented (t <« t-1), and the iterative
denoising process continues through multiple timesteps as illustrated in
Fig. 6b until reaching timestep 0, where the final denoised phase image
Do is obtained. The flow chart for the inference process is shown in
Fig. 7.

Input

Random noise, in-line hologram h, t=T

!

Generate p’ using trained Gg by Equation 7

Generate pP;_; from p’ by Equation 9

t—t—1

Denoised phase image P

Output

Fig. 7. Flowchart depicting the inference process of the trained unsupervised
diffusion-based model for quantitative phase image reconstruction. Starting
from a single acquired in-line hologram and an initial Gaussian noise sample,
the model iteratively performs denoising through reverse diffusion steps, pro-
gressively reconstructing a high-quality quantitative phase image. The infer-
ence continues iteratively from timestep T down to timestep O, achieving a
precise final phase image reconstruction.
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This iterative denoising process leverages the trained model’s
learned understanding of the relationship between in-line holographic
patterns and their corresponding phase distributions. The model applies
its learned knowledge of holographic physics and twin image suppres-
sion without requiring any additional measurements or off-axis refer-
ence data. Each denoising step progressively removes noise while
conditioning on the input hologram, ensuring that the final recon-
struction maintains consistency with the measured holographic data.

The final output po provides a quantitative phase image that has
effectively resolved the twin image problem inherent in the original in-
line hologram. This reconstructed phase image contains the optical path
difference information necessary for biological analysis, including
cellular morphology, dry mass calculation, and 3D structure character-
ization, all derived from a single holographic measurement without
requiring the complex optical infrastructure traditionally associated
with quantitative phase imaging.

2.5. Evaluation metrics

To more thoroughly assess the visual fidelity of the image translation
results, we utilized two standard metrics commonly applied in image-to-
image translation tasks. The first metric, peak signal-to-noise ratio
(PSNR), measures the pixel-wise intensity difference between the
reconstructed image and the ground truth, with higher values indicating
greater similarity. The second metric, structural similarity index (SSIM)
(Wang et al., 2004), evaluates perceptual similarity by considering
luminance, contrast, and structural components. An SSIM value
approaching 1 signifies a higher degree of resemblance between the two
images.

3. Results
3.1. Phase reconstruction using the diffusion model

3.1.1. Results of the diffusion model that trained only red blood cells or
cancer cells

We trained a diffusion model using in-line holograms and phase
images of only RBCs or cancer cells. In the RBC data we used, both
discocytes and spherocytes existed simultaneously (Kim et al., 2022).
The phase images generated by the diffusion model were evaluated
against ground truth phase images reconstructed from off-axis holo-
grams. Fig. 8 presents both the reconstructed phase maps and corre-
sponding 3D surface plots, demonstrating that our method successfully
preserves the 3D structural information inherent in holographic imag-
ing. The 3D surface plots clearly reveal the characteristic biconcave
shape of red blood cells and the complex morphological features of
cancer cells, confirming that the depth information is accurately
reconstructed by our approach. The left column depicts results from a
model trained solely on RBCs, while the right column shows outcomes
from training exclusively on cancer cells.

As illustrated in Fig. 8, the phase line profiles extracted from the
cropped regions demonstrate strong agreement between the diffusion
model output and the ground truth, providing quantitative evidence that
our method maintains the same 3D structural characteristics as the
reference measurements. These line profiles show that the phase varia-
tions across cellular features, which directly correspond to optical path
differences and thus depth information, are accurately reproduced by
our model, confirming that the 3D morphological information is faith-
fully reconstructed.

The reconstruction performance shows some differences between the
two cell types due to their distinct morphological characteristics. RBCs,
with their consistent round morphology and uniform structural features,
show excellent agreement with ground truth reconstructions. Cancer
cells, however, tend to exhibit slightly blurred edges in the recon-
structed phase images, particularly at cellular boundaries and extended
processes. This occurs because cancer cells often display complex
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Fig. 8. Red blood cell and cancer cell phase images generated from a diffusion model only trained on red blood cell or cancer cell holographic images. The ground
truth image is shown on the left, and the corresponding image generated by the model is shown on the right. Below, a 3D surface plot of the reconstructed phase
image is presented using a lookup table, followed by a magnified 3D view of the region marked with a white box. The bottom graphs display line profiles of the phase
distribution across representative cells, comparing ground truth (orange) and generated results (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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branching structures and irregular extensions that present greater
challenges for reconstruction compared to the more uniform geometry
of RBCs. The consistent morphology among RBCs makes them more
amenable to accurate reconstruction, whereas the diverse and complex
morphological features of cancer cells, including their extended pro-
jections and irregular boundaries, can result in some edge blurring in the
reconstructed phase images.

3.1.2. Results of the diffusion model that simultaneously trained red blood
cells and cancer cells

Effective training of a deep learning model for phase reconstruction
requires strong generalization capability to ensure robust performance
across diverse samples. Even if data of different shapes are used as input,
the performance of phase reconstruction should be the same. We trained
a diffusion model using simultaneous in-line holographic and phase
images of RBCs and cancer cells. The output phase image produced by
the diffusion model was compared with the ground truth phase image
obtained through numerical reconstruction of the off-axis hologram.
Fig. 9 shows phase images and corresponding 3D surface plots generated
from the diffusion model, demonstrating that our method continues to
preserve the essential 3D structural information when trained on mul-
tiple cell types simultaneously. The 3D surface plots clearly show that
both the characteristic biconcave morphology of red blood cells and the
complex structural features of cancer cells are accurately reconstructed,
confirming that the depth and dimensional information inherent in
holographic measurements is maintained across different cellular types.

Fig. 9 shows comparable results to those presented in Fig. 8, indi-
cating that simultaneous training on multiple cell types does not
compromise the reconstruction quality. The phase line profiles gener-
ated by the diffusion model exhibit a high degree of similarity to the
reference measurements, providing quantitative evidence that the 3D
morphological characteristics are preserved regardless of the training
strategy. These profiles demonstrate that the phase variations corre-
sponding to optical path differences and cellular depth information are
accurately reproduced across both cell types, validating that our method
successfully maintains 3D reconstruction capabilities when handling
diverse biological specimens simultaneously.

The reconstruction performance maintains the same characteristics
observed in single-cell-type training: RBCs continue to show excellent
reconstruction fidelity due to their consistent morphology, while cancer
cells may exhibit slight edge blurring at cellular boundaries and
extended processes due to their more complex and variable structural
features. However, the overall 3D reconstruction quality remains high
for both cell types, demonstrating the robustness of our approach across
diverse cellular morphologies.

3.1.3. Single cell analysis of phase images reconstructed from the diffusion
model

The reconstructed phase image offers detailed quantitative insights
into cellular morphology. Based on this image, we computed the optical
path difference (OPD) (Rappaz et al., 2005; Roitshtain et al., 2017). The
OPD is directly proportional to the physical thickness of the cell and
serves as a key parameter for quantitative phase analysis, providing
essential 3D information about cellular structure and volume. To
analyze individual cells, we applied image smoothing followed by Otsu
thresholding to generate binary masks, which were then used to segment
single-cell regions (Fig. 10a). For each segmented cell, we extracted
three key 3D metrics: dry mass, projected area, and phase volume. Dry
mass reflects the total non-aqueous content within the cell; the projected
area represents the cell’s two-dimensional footprint; and phase volume
offers an OPD-based estimation of the intracellular volume, accounting
for variations in refractive index and cellular thickness.

These quantitative measurements demonstrate that our recon-
structed phase images preserve the essential 3D information necessary
for accurate cellular analysis. The successful calculation of phase vol-
ume, in particular, validates that our method maintains the depth-
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related information encoded in the original holographic measure-
ments, as this parameter directly depends on the optical path differences
that reflect the 3D cellular structure.

Fig. 10 compares the quantitative measurements of the ground-truth
phase images with those obtained from the phase images reconstructed
by each model. When comparing the extracted information, the diffu-
sion model shows almost similar results whether it trains only RBCs or
cancer cells, or simultaneously trains both data. The strong correlation
between measurements from ground truth and reconstructed phase
images for all 3D parameters demonstrates that our method successfully
preserves the quantitative 3D information necessary for accurate
cellular morphometry and volumetric analysis. The reconstructed re-
sults show strong agreement with the ground truth for RBCs, owing to
their consistent shape, whereas cancer cells exhibit minor deviations due
to their structural heterogeneity.

3.2. Comparison results with GAN models based on unsupervised learning

3.2.1. Comparison results that trained only red blood cells or cancer cells

We compared the results of phase reconstruction of the diffusion
model with CycleGAN and UNIT, which are famous unsupervised
learning-based GAN models (Fig. 11). CycleGAN shows poor recon-
struction, with dark regions of the inline hologram barely being recon-
structed. For the UNIT model, the phase image appears to be well
reconstructed for RBCs, but there are parts that appear blurry. Unsu-
pervised GAN models struggle with cancer cell reconstruction, display-
ing significant shape variances from the ground truth and consistently
missing numerous cells. This challenge is fueled by the vastly diverse
morphology of cancer cells, rendering precise image reconstruction a
quite difficult task.

3.2.2. Comparison results that simultaneously trained red blood cells and
cancer cells

Unlike the previous results, unsupervised GAN-based models, when
trained simultaneously on two different types of data, show very large
problems in phase reconstruction (Fig. 11). In the case of CycleGAN, it
can be seen in red blood cell reconstruction that an image similar to a
cancer cell is reconstructed. Additionally, in cancer cell reconstruction,
no image is reconstructed at all. In the case of UNIT, while in RBC
reconstruction, some cells are reconstructed to some extent, many other
cells are missing. In cancer cell reconstruction, the shape is barely
recognizable. In contrast, the diffusion model generated images similar
to the ground truth, regardless of RBCs and cancer cells. This shows that
the model can simultaneously train more diverse cells, and generaliza-
tion is possible.

3.2.3. Evaluation metrics for diffusion and comparative models

Tables 1 and 2 present the outcomes of evaluating the similarity
between the generated images and the ground truth, using SSIM and
PSNR as key metrics. In the context of red blood cells (RBCs), GAN-based
models demonstrated a PSNR of around 30, whereas the diffusion model
exhibited a notably higher PSNR exceeding 33. Similarly, in SSIM cal-
culations, the model recorded the highest values. Interestingly, when
trained exclusively on RBCs, the performance of the GAN-based models
improved, compared to when simultaneous trained on RBCs and cancer
cells. However, in the diffusion model, this trend was reversed, which
model showed significantly better results when concurrently trained on
both RBCs and cancer cells. A parallel pattern emerged with cancer cells:
when trained solely on cancer cells, the GAN-based models achieved
superior outcomes, as opposed to when trained jointly with RBCs. This
differential was more pronounced than in the RBC test. In contrast, the
diffusion model maintained high-performance indices, regardless of
whether it was trained only on cancer cells, or simultaneously on both
cell types. These findings suggest that for the GAN-based models,
simultaneous training of different data types may lead to confusion in
distribution learning. Conversely, for the diffusion model, training on a
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Fig. 9. Red blood cell and cancer cell phase images generated from a diffusion model simultaneously trained on red blood cell and cancer cell holographic images.
The ground truth image is shown on the left, and the corresponding image generated by the model is shown on the right. Below, a 3D surface plot of the reconstructed
phase image is presented using a lookup table, followed by a magnified 3D view of the region marked with a white box. The bottom graphs display line profiles of the
phase distribution across representative cells, comparing ground truth (orange) and generated results (blue). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

14



S. Park et al. Engineering Applications of Artificial Intelligence 163 (2026) 112970

(a) The process of creating segmented cell images from phase images

Binary image Segmented image

T
SAOGiNg Instance
0 Threshold Segmentation
. R
0

(b) Quantitative single-cell analysis of RBCs

240 65
- 220 s g 60 . ° .
£ 200 5
£ 180 g s
& < I ] | |
= 160 g 40 | I——— 1
2 8 35
140 5
) 50 2 30 _L
€ £ 1
100 20
55 11
50 . o 10 R .
@ 45 E 9 5
S w0 £ g J
% (=]
= 35 ,_—‘__,,L‘ o 7 |L|
S L X k3
> 30 g 6 ] I i
e T & =
20 - 4
15 3

’ == Ground Truth = Only RBCs =— Both

(c) Quantitative single-cell analysis of cancer cells
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Fig. 10. Quantitative analysis of cellular features extracted from phase images generated by the diffusion model. (a) is the process of creating segmented cell images
for cell analysis. (b) is single cell analysis for RBCs data, and (c) is single cell analysis for cancer cell data. Four indicators were calculated from cell images. The
orange box is the ground truth, while the blue box results from a model trained only RBCs or cancer cells. The green box results from a model simultaneously trained
on RBCs and cancer cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 11. Results of the red blood cell and cancer cell phase image generated by CycleGAN, UNIT, and the diffusion model. The left side of the result is comparison
results that trained only red blood cells or cancer cells, and the right side of the result is comparison results that simultaneously trained red blood cells or cancer cells.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1
PSNR and SSIM values for phase images generated by models trained only red
blood cells or cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells
CycleGAN 31.55/0.7253 32.07/0.8255
UNIT 31.59/0.7402 31.34/0.8029

Diffusion model 33.09/0.7625 33.90/0.8449

Table 2

PSNR and SSIM values for phase images generated by models simultaneously
trained on red blood cells and cancer cells from 200 test images (left: PSNR,
right: SSIM).

Model Red blood cells Cancer cells
CycleGAN 29.12/0.5384 28.73/0.4999
UNIT 30.96/0.7318 31.27/0.7506

Diffusion model 34.26/0.8359 35.27/0.8591

diverse data set appears to facilitate more robust feature extraction.

3.2.4. Computational cost for diffusion and comparative models

While our diffusion model demonstrates superior reconstruction
performance compared to CycleGAN and UNIT, it is essential to evaluate
the computational cost associated with these improvements. We per-
formed our comparison using a single NVIDIA Quadro RTX 6000. As
shown in Table 3, the diffusion model has significantly more parameters
compared to CycleGAN and UNIT, representing approximately 17-fold
and 16-fold increases respectively. This larger model size translates to
higher memory requirements compared to CycleGAN and UNIT,
requiring approximately 17 times more memory resources. Addition-
ally, the training time per epoch is substantially longer for the diffusion
model (3.5275 s) compared to CycleGAN (0.40375 s) and UNIT
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Table 3

Model complexity and computational efficiency comparison: parameters,
memory usage, training time, and inference time for diffusion model, CycleGAN,
and UNIT.

Model # Parameters ~ Memory Training Inference
usage time time
CycleGAN 21,194,116 80.86 MB 0.403 s 0.025 s
UNIT 22,327,684 85.18 MB 0.496 s 0.058 s
Diffusion 361,260,426 1378.1 MB 3.527 s 0.271s
model

(0.49625 s), requiring approximately 9 times more computational re-
sources during training. These increased computational demands during
training reflect the complex iterative denoising process and the dual-
module architecture incorporating both cycle-consistency and denois-
ing components, which contribute to the model’s enhanced recon-
struction capabilities.

Despite the higher training costs, the diffusion model demonstrates
practical efficiency during inference with a reconstruction time of 0.271
s per image, which approaches real-time performance suitable for clin-
ical applications. While this is not faster than CycleGAN (0.025 s) or
UNIT (0.058 s), the inference speed remains acceptable for practical
deployment, especially considering the substantial quality improve-
ments achieved. The reconstruction quality gains, as demonstrated by
consistently higher PSNR and SSIM values across both red blood cells
and cancer cells, justify the computational overhead. The trade-off
analysis reveals that while the diffusion model requires more compu-
tational resources during training and slightly longer inference times,
the superior reconstruction fidelity and robustness across diverse
cellular morphologies provide significant value for quantitative phase
imaging applications. This computational cost-to-performance ratio
represents a worthwhile investment for applications where
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reconstruction accuracy is paramount, such as medical diagnostics and
biological research.

3.3. Comparison results with supervised learning-based model in scenarios
with limited data

3.3.1. Comparison results that trained only red blood cells or cancer cells

We compared the phase reconstruction results of the unsupervised
diffusion model with that of the supervised model (Fig. 12). The su-
pervised model was trained on paired data using only the denoising
module, which excludes the cycle consistency module incorporated in
the unsupervised model. The comparison was also conducted in a sce-
nario characterized by a scarcity of labeled data, with each model being
trained using merely 50 labels.

When trained with only RBCs, both the supervised model and the
diffusion model showed excellent performance when all available data
was used for training. When limited to training using only 50 labels, the
supervised model showed that certain cells were not reconstructed, but
overall the reconstruction was performed well. The diffusion model
reliably reconstructed cells. When only cancer cells were trained, a
similar trend was observed as for RBCs, but a larger difference occurred.
In particular, when limited to 50 labels, the supervised model showed a
very large difference from the ground truth. This can be inferred as a
result of the diversity of cell morphology. Because most cells in RBCs
have similar morphology, a supervised model can be trained to perform
reconstruction even if only a small amount of data is used. However,
because cancer cells vary significantly in their morphology, using a
small amount of labeled data can lead to a decrease in performance. The
unsupervised learning model shows better generalization compared to
the supervised learning model, as it can efficiently utilize a large amount
of input data and train across the domain.

3.3.2. Comparison results that simultaneously trained red blood cells and
cancer cells
Similar to previous results, we compared the phase reconstruction

Engineering Applications of Artificial Intelligence 163 (2026) 112970

results of the diffusion model with those of the supervised model when
simultaneously training on both red blood cells and cancer cells
(Fig. 12). When utilizing all available data, the supervised model
effectively reconstructed the phase images of both red blood cells and
cancer cells. However, a significant decline in performance was
observed when each model was trained using only 50 labels for each cell
type. In the case of cancer cells, the difference was more pronounced,
and a noticeable deterioration in the reconstruction quality of red blood
cells was also evident. In contrast, the diffusion model demonstrated the
capability to generate images similar to the ground truth, both when
using the full dataset and when limited to 50 labels per cell type.

3.3.3. Evaluation metrics for diffusion and comparative models

Tables 4 and 5 present the results of evaluating the similarity be-
tween generated images and the ground truth using SSIM and PSNR. The
supervised model exhibits excellent performance when trained with the
full dataset, particularly when simultaneously training from both red
blood cells and cancer cells, showing high SSIM and PSNR values for
both cell types. However, the model’s performance declines when the
number of labels is limited to 50. This performance drop is particularly
pronounced in the phase reconstruction of cancer cells, where both SSIM
and PSNR values significantly decrease. In contrast, the diffusion model
maintains consistent performance regardless of the number of labels. In
particular, it shows almost no decrease in performance in the recon-
struction of cancer cell phase images, where the performance of the

Table 4
PSNR and SSIM values for phase images generated by models trained only red
blood cells or cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells

Supervised model

Supervised model with 50 labels
Diffusion model

Diffusion model with 50 labels

32.81/0.8862
32.46/0.8668
33.09/0.7625
31.99/0.7291

35.64/0.9091
29.74/0.8046
34.90/0.8449
33.01/0.8345

Only Trained Red Blood Cells or Cancer Cells

Simultaneously Trained Red Blood Cells and Cancer Cells

Supervised model
w/ 50 labels

Proposed model

Ground Truth Supervised model  w/ 50 labels

Red blood

Cancer cells

Proposed model

Supervised model
w/ 50 labels
L]

Proposed model

Supervised model ~ w/ 50 labels Proposed model

7:0 n0 1:0

T 7[ 1[ 7[ T

Fig. 12. Results of the red blood cell and cancer cell phase image generated by the supervised model and the diffusion model trained using all and limited data. The
top of the result is the entire phase image, and the bottom is the cropped image of the cell with the red box enlarged. The results are separated into comparison results
that trained only red blood cells or cancer cells and comparison results that simultaneously trained red blood cells or cancer cells. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 5

PSNR and SSIM values for phase images generated by models simultaneously
trained on red blood cells and cancer cells from 200 test images (left: PSNR,
right: SSIM).

Model Red blood cells Cancer cells

34.68/0.8996
30.23/0.8277
34.26/0.8359
33.04/0.8084

35.32/0.9067
30.39/0.8136
35.27/0.8591
33.08/0.8305

Supervised model

Supervised model with 50 labels
Diffusion model

Diffusion model with 50 labels

supervised model was significantly lowered. Nevertheless, the super-
vised model performs well with red blood cells, likely because red blood
cells have more consistent morphology compared to cancer cells.
Because the morphology of red blood cells is similar among cells, it is
easy to extract cell characteristics even when using a small amount of
data. Conversely, the varied morphology among cancer cells presents
challenges in feature extraction and training with limited data. The
unsupervised diffusion model, optimized to train on the general char-
acteristics of the domain, demonstrates superior performance even with
fewer labels compared to the supervised model.

3.4. Noise schedule parameters sensitivity analysis

The performance of diffusion models is critically dependent on the
choice of hyperparameters, particularly the noise schedule parameters
that govern the forward diffusion process. To ensure reproducibility and
understand the robustness of our approach, we conducted a compre-
hensive sensitivity analysis on key hyperparameters: the number of
timesteps (T) and the noise variance bounds (Bmin and fmay) using
models simultaneously trained on both red blood cells and cancer cells.
This analysis is essential for validating the stability of our model and
providing guidance for parameter selection in different experimental
conditions. The hyperparameters used in our main experiments (T = 4,
Pmin = 0.1, fmax = 20) were adopted from the denoising diffusion GAN
framework proposed by Ozbey et al., which has demonstrated effec-
tiveness in medical imaging applications. However, given the unique
characteristics of holographic phase reconstruction, it is crucial to
evaluate how variations in these parameters affect reconstruction
quality. We systematically varied timesteps (T = 2, 6, 8) and noise
variance bounds across three configurations to assess their impact on
phase reconstruction performance.

The experimental results presented in Table 6 demonstrate clear
relationships between hyperparameter choices and reconstruction
quality across different cell types. For timestep sensitivity, we observed
progressive improvements in both SSIM and PSNR metrics as the num-
ber of timesteps increased. Cancer cells showed SSIM values improving
from 0.814 (T = 2) to 0.836 (T = 6) and 0.849 (T = 8), with corre-
sponding PSNR increases from 34.32 to 34.58 and 34.98 dB respectively.
Red blood cells exhibited similar trends with SSIM values of 0.788,
0.814, and 0.829, and PSNR values of 34.32, 34.42, and 34.93 dB.
Notably, our main configuration (T = 4, fnin = 0.1, fmax = 20) achieved
the highest performance with RBC: 34.26 dB/0.8359 and Cancer: 35.27

Table 6
Hyperparameter sensitivity analysis results for diffusion model trained on both
red blood cells and cancer cells from 200 test images (left: PSNR, right: SSIM).

Model Red blood cells Cancer cells

34.26/0.8359
33.20/0.7882
33.78/0.8148
34.31/0.8294
33.20/0.8410
33.71/0.7959
34.11/0.8239

35.27/0.8591
34.32/0.8144
34.58/0.8358
34.98/0.8485
34.29/0.8431
34.58/0.8225
34.97/0.8545

Main (T = 4, § = 0.1/20)
T=2,§=0.1/20
T=6,=0.1/20
T=38,p=0.1/20
T=4,$=0.05/10

T =4,/ =0.2/40
T=4,p=0.1/50
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dB/0.8591, surpassing all tested variations. Among the noise variance
configurations, moderate settings (fmin = 0.05, fmax = 10) showed
competitive performance with SSIM values of 0.843 (cancer) and 0.841
(red blood cells), while excessive noise variance led to degradation. This
validates our parameter selection and demonstrates that balanced noise
scheduling is crucial for optimal phase reconstruction.

3.5. Comparison with iterative phase reconstruction methods

To evaluate the feasibility of single-shot phase reconstruction from
in-line holograms, we conducted comparative experiments with itera-
tive phase reconstruction methods. Two distinct approaches were tested:
conventional numerical iterative algorithm (Latychevskaia, 2019) and
deep learning-based iterative method (Deep DIH) (Li et al., 2020). The
numerical approach utilized established phase retrieval techniques such
as the Gerchberg-Saxton (GS) algorithm, which employs
constraint-based optimization through alternating projections between
the hologram and object planes. The deep learning-based method
leveraged neural network architectures to learn the mapping between
holographic measurements and phase distributions. All experimental
comparisons were standardized using 1000 iterations to ensure fair
evaluation across different algorithmic approaches.

The comparative results, demonstrated in Fig. 13, reveal significant
differences in reconstruction quality between methods. The GS algo-
rithm shows partial success in recovering red blood cell morphology but
exhibits substantial background artifacts. Deep DIH provides better
background suppression but fails to accurately reconstruct cellular
structures. The proposed diffusion model achieves superior reconstruc-
tion fidelity, closely matching ground truth for both cellular detail and
background clarity. Quantitative evaluation in Table 7 confirms these
observations, with the diffusion model achieving 34.26 dB PSNR/
0.8359 SSIM for red blood cells and 35.27 dB/0.8591 for cancer cells,
substantially outperforming GS (RBC 17.15 dB/0.6525, Cancer 25.48
dB/0.7461) and Deep DIH (RBC 21.93 dB/0.7333, Cancer 30.37 dB/
0.8220). The superior performance of Deep DIH over GS stems from
better background reconstruction capability.

These reconstruction challenges arise from fundamental limitations
in single-shot in-line holography. As established by Latychevskaia and
Fink, twin image interference creates severe problems for complex
biological specimens with varying optical densities and irregular mor-
phologies. Biological samples present additional complications
including weak phase contrast, irregular boundaries, and heterogeneous
refractive indices that violate sparse object assumptions underlying
conventional algorithms. Such factors make convergence challenging,
rendering traditional iterative methods unreliable for biological speci-
mens. Additionally, the proposed method demonstrates exceptional
computational efficiency, requiring only 0.271 s per one image
compared to GS (475.80 s) and Deep DIH (286.09 s). This advantage
stems from direct inference through pre-trained networks versus itera-
tive optimization processes, making conventional approaches imprac-
tical for real-time applications.

3.6. Robustness evaluation across different propagation distances

One critical limitation of diffusion-based holographic reconstruction
models is their potential sensitivity to variations in optical parameters,
particularly propagation distance, which directly affects hologram for-
mation and phase reconstruction quality. To evaluate the robustness of
our approach under varying imaging conditions, we conducted a
comprehensive analysis comparing models trained on two distinct
datasets: one with randomized propagation distances and another with
fixed in-focus distances. For red blood cells imaged at 40 x magnifica-
tion, training data was acquired with randomly adjusted distances
within +1.8 pm from the in-focus position, while cancer cells at 20 x
magnification utilized a +3.0 pm range. Test datasets were
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Fig. 13. Comparative reconstruction results from single-shot in-line holograms of biological samples. The top row shows red blood cells, and the bottom row shows
cancer cells. From left to right: original in-line hologram, GS algorithm result, Deep DIH result, proposed diffusion model result, and ground truth obtained from off-
axis holography. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 7
Quantitative comparison of reconstruction methods showing PSNR/SSIM values
for red blood cells and cancer cells, along with inference times.

Model Red blood cells Cancer cells Inference time
GS-based algorithm 17.15/0.6525 25.48/0.7461 475.80 s
Deep DIH 21.93/0.7333 30.37/0.8220 286.09 s
Diffusion model 34.26/0.8359 35.27/0.8591 0.271s

systematically generated at 0.3 pm intervals (RBCs) and 0.5 pm intervals
(cancer cells) across their respective ranges, with five images acquired at
each distance position. This experimental design allows us to assess how
training data diversity in propagation distance affects model general-
ization and reconstruction fidelity under defocused conditions,
addressing practical scenarios where precise focus control may be
challenging.

The results for red blood cells, as shown in Fig. 14a, reveal significant
sensitivity to negative propagation distance variations due to the high
magnification (40 x ) used for imaging. Both models demonstrate
acceptable reconstruction quality within the positive distance range,
where the in-line holograms remain relatively similar to the in-focus
condition. However, performance degrades substantially for negative
distances beyond —0.9 pm, as evidenced by sharp drops in both SSIM
and PSNR metrics. The model trained with random distances shows
robustness, maintaining recognizable cellular morphology even at —1.2
pm, while the in-focus trained model loses cellular features beyond this
threshold. This performance difference highlights the importance of
training data diversity in achieving robust reconstruction across varying
optical conditions. The asymmetric performance between positive and
negative distances suggests that the in-focus hologram characteristics
are more similar to slightly positive-defocused conditions, explaining
the better reconstruction quality in the positive direction. These findings
emphasize the need for careful consideration of propagation distance
variations during model training for high-magnification applications.

Cancer cell reconstruction demonstrates significantly improved
robustness across different propagation distances, as illustrated in
Fig. 14b, primarily due to the lower magnification (20 x ) that reduces
sensitivity to distance variations. Both training approaches maintain
cellular morphology visibility across the entire tested range, with
quantitative metrics showing less degradation compared to red blood
cells. For models trained with random distances, negative distances still
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present challenges, but the performance reduction is substantially less
severe, and cellular structures remain clearly distinguishable even at
extreme positions. The comparison between random distance and in-
focus training reveals consistent but gradual performance differences,
with the random distance approach showing slightly superior SSIM and
PSNR values across most tested positions. Notably, the performance gap
between the two training strategies is considerably smaller for cancer
cells than for red blood cells, indicating that lower magnification im-
aging provides inherent robustness to distance variations. These results
demonstrate that our diffusion model can effectively reconstruct cancer
cell phase images across a practical range of propagation distances,
making it suitable for applications where precise focus control may be
challenging or where rapid imaging protocols are required.

3.7. Generalization evaluation on different cancer cell morphologies

To evaluate the generalization capability of our diffusion model
across diverse cellular structures, we conducted experiments using two
distinct training configurations with varying levels of morphological
diversity. The single-cancer configuration utilized our standard dataset
comprising red blood cells and ovarian cancer cells (SKOV3), while the
multi-cancer approach incorporated red blood cells alongside four
different cancer cell lines representing various origins: ovarian (SKOV3),
liver (SNU475), bladder (T24), and lung (NCI-H1299). As illustrated in
Fig. 15, these cancer cell lines exhibit significantly different morpho-
logical characteristics compared to the original ovarian cancer cells,
including variations in cell size, shape complexity, and internal struc-
tures. The liver cancer cells display larger, more circular morphologies,
while bladder cancer cells show elongated structures, and lung cancer
cells present irregular, highly variable shapes. This morphological di-
versity provides a robust testing ground for assessing the model’s ability
to generalize beyond its training data and reconstruct phase images from
previously unseen cellular architectures, which is crucial for practical
biomedical applications.

When examining reconstruction quality across different cancer cell
morphologies, we observed consistent patterns in performance charac-
teristics. As shown in Fig. 15, while reconstructed phase images main-
tain good overall fidelity to ground truth measurements, these
morphologically diverse cell types exhibit slight edge blurring at cellular
boundaries, particularly in regions with complex structural features.
Despite this visual edge softening, quantitative metrics demonstrate
high reconstruction quality.
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Fig. 14. Robustness evaluation across different propagation distances. Two training regimes are compared: a model trained only at the in-focus distance and a model
trained with randomized propagation distances. For each dataset, the image montage shows representative results across defocus and the line plots report SSIM/
PSNR versus focus distance. (a) RBC results (40 x ). Training distances were randomized within +1.8 pm; testing was performed every 0.3 pm with five images per
position. Columns span —1.8 — +1.8 pm; rows show (from top) input hologram, reference phase, reconstruction from the in-focus-trained model, and reconstruction
from the random-distance-trained model. (b) Cancer-cell results (20 x ). Training distances were randomized within +3.0 pm; testing used 0.5 pm steps with five
i‘mages per position. The same row order is used as in (a), with columns spanning —3.0 - +3.0 pm.
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Fig. 15. Generalization of diffusion-based phase reconstruction across diverse cancer cell morphologies. To assess the model’s ability to generalize beyond its
training data, we compared two training configurations: a single-cancer setup trained on RBCs and ovarian cancer cells, and a multi-cancer setup trained on RBCs
plus four cancer cell lines (ovarian, liver, bladder, and lung). Representative examples are shown for three previously unseen cancer types: lung, liver, and bladder.

Columns display the in-line holograms (left), ground-truth off-axis phase reconstructions (middle-left), single-cancer trained outputs (middle-right), and multi-cancer
trained outputs (right).
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As summarized in Table 8, the comparative analysis reveals inter- cell lines (liver, bladder and lung), despite never encountering these
esting trade-offs in model performance when training data diversity is morphologies during training. This demonstrates the diffusion model’s
increased through multi-cancer training. Models trained with the multi- inherent ability to learn generalizable reconstruction principles rather
cancer approach demonstrated improved reconstruction performance than simply memorizing specific cellular features. The successful
for cancer cells, with enhanced SSIM and PSNR metrics compared to the reconstruction of morphologically distinct cancer cells suggests that the
single-cancer training configuration. However, this improvement came model has effectively learned the underlying physics of phase image
at the cost of slightly reduced performance for red blood cell recon- formation and holographic reconstruction processes.

struction. Notably, the single-cancer trained model still achieved

reasonable reconstruction quality for the three previously unseen cancer L
3.8. Performance analysis with wrapped phase data

Table 8 Phase wrapping is a fundamental challenge in quantitative phase
Reconstruction performance comparison between single-cancer and multi- imaging, where phase values are constrained to the range [-m, 7],
cancer training configurations across red blood cells and four cancer cell lines creating discontinuities at boundaries where the actual phase exceeds
from 200 test images (left: PSNR, right: SSIM). these limits. To assess our diffusion model’s capability in handling
Training Red blood  Ovarian Lung Liver Bladder different phase representations, we conducted comparative experiments
data cells cancer cancer cancer cancer using wrapped and unwrapped phase images as training targets.
Single- 34.26/ 35.27/ 35.70/ 35.90/ 34.45/ Wrapped phase images contain artificial discontinuities where phase
cancer 0.8359 0.8591 0.8753 0.8724 0.8567 values jump from +x to -n (or vice versa), while unwrapped phase im-
Multi- 33.88/ 35.63/ 36.20/ 36.62/ 35.21/ ages maintain continuous phase distributions that better represent the
cancer 0.7867 0.8766 0.8787 0.8767 0.8625

true optical path differences through biological specimens. This
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comparison is particularly relevant for practical applications where
phase unwrapping algorithms may be unavailable or computationally
expensive, potentially making wrapped phase reconstruction an attrac-
tive alternative. The experimental setup utilized the same in-line holo-
gram inputs but different ground truth phase representations, allowing
direct assessment of how phase representation affects reconstruction
quality. Understanding these differences is crucial for determining
optimal training strategies and evaluating the model’s robustness across
different phase imaging scenarios commonly encountered in digital
holographic microscopy applications.

The experimental results demonstrate significant performance dif-
ferences between wrapped and unwrapped phase training approaches,
as illustrated in Fig. 16. Models trained with wrapped phase data
struggled to accurately reconstruct continuous phase transitions,
particularly in regions where phase wrapping occurred. While recon-
struction quality remained reasonable in areas without phase disconti-
nuities, the model failed to properly identify and handle phase transition
boundaries, resulting in artifacts and discontinuous phase profiles. In

Engineering Applications of Artificial Intelligence 163 (2026) 112970

contrast, models trained with unwrapped phase data successfully
reconstructed continuous phase distributions, maintaining smooth
transitions across the entire cellular structure. The quantitative analysis
reveals that while PSNR and SSIM metrics appear relatively similar
(wrapped: RBC 33.23/0.7764, Cancer 34.36/0.8225; unwrapped: RBC
34.26/0.8359, Cancer 35.27/0.8591), this similarity is primarily due to
most adherent cells exhibiting limited phase wrapping (Table 9). How-
ever, the unwrapped training consistently outperformed wrapped

Table 9

Reconstruction performance comparison for diffusion models trained with
wrapped versus unwrapped phase images on red blood cells and cancer cells
from 200 test images (left: PSNR, right: SSIM).

Training data Red blood cells Cancer cells

Wrapped phase
Unwrapped phase

33.23/0.7764
34.26/0.8359

34.36/0.8225
35.27/0.8591

Cancer cells

Red blood cells

Ground truth Generated phase

Wrapped phase

Unwrapped phase

2r

0 2 4 6 8
Distance (um)

Ground truth
wrapped phase

~ Generated
wrapped phase

Ground truth Generated phase

0 10 20 30
Distance (um)

Ground truth
unwrapped phase

Generated
unwrapped phase

Fig. 16. Comparison of reconstruction performance using wrapped versus unwrapped phase targets. Left panels show results for red blood cells (RBCs) and right
panels show results for cancer cells. For each dataset, the top row corresponds to models trained with wrapped phase images (ground truth vs. generated), and the
second row corresponds to models trained with unwrapped phase images. Orange boxes indicate representative cells selected for line profile analysis. The bottom
graphs plot the phase distributions across the highlighted cells, comparing ground-truth wrapped, generated wrapped, ground-truth unwrapped, and generated
unwrapped results. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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training across both cell types. The line profile analysis clearly demon-
strates the superior ability of unwrapped training to maintain phase
continuity, making it the preferred approach for quantitative phase
reconstruction applications requiring accurate optical path difference
measurements.

4. Discussion
4.1. Comparison with alternative compact phase imaging technologies

Several compact phase imaging technologies have emerged as al-
ternatives to traditional off-axis holography, each offering distinct ad-
vantages and limitations. Quadriwave Lateral Shearing Interferometry
(QLSI) provides single-shot quantitative phase imaging using a special-
ized diffraction grating and is commercially available with excellent
stability (Bon et al., 2009). However, QLSI suffers from reduced spatial
resolution (typically 4 x lower than the sensor resolution) and requires
expensive specialized hardware. Coded Wavefront Sensing achieves
ultra-high spatial resolution through spatial light modulators and
computational algorithms, but faces significant limitations in acquisi-
tion speed due to the need for multiple sequential measurements (8-20
acquisitions) and computationally intensive iterative reconstruction al-
gorithms, making it impractical for real-time applications (Kazim et al.,
2025; Wang et al., 2017). Self-reference digital holography with LED
illumination offers speckle-free imaging using everyday light sources,
but requires complex optical setups with polarization-sensitive compo-
nents and precise alignment procedures (Tahara, 2024).

In contrast, our unsupervised diffusion model approach offers several
distinct advantages: Cost-effectiveness - utilizing standard Gabor ho-
lography setups without specialized hardware, Real-time capability -
single-shot acquisition with rapid inference once trained, Scalability -
software-based improvements through advanced Al algorithms, and
Data efficiency - robust performance even with limited training data
through unsupervised learning. While our method may not achieve the
absolute highest spatial resolution of coded wavefront sensing, it pro-
vides an optimal balance of performance, practicality, and accessibility
for quantitative phase imaging applications.

4.2. Spatial resolution considerations and trade-offs

In our study, an apparent gap exists between the theoretical resolu-
tion defined by the optical system and the practical resolution observed
in the reconstructed phase images. The theoretical transverse resolution
of both off-axis and in-line configurations is determined by the diffrac-
tion limit of the microscope objective (MO), expressed as § ~ 0.611/NA,
and is further influenced by the pixel size of the image sensor. In prac-
tice, however, the effective resolution differs depending on the acqui-
sition geometry and reconstruction strategy. Off-axis DHM benefits from
the Fourier-domain separation of real, twin, and zero-order terms,
enabling it to approach its diffraction-limited resolution more closely. In
contrast, in-line (Gabor) holography, while theoretically capable of a
larger space-bandwidth product, suffers from twin-image overlap,
background contributions, and speckle noise that degrade fine spatial
details. Moreover, our Al-based reconstruction framework is trained
using phase images from off-axis DHM as ground truth, which constrains
the reconstructed outputs to the resolution ceiling imposed by the NA
and magnification of the off-axis system.

Despite these limitations, our method achieves effective resolution
sufficient for cellular morphology analysis and quantitative phase
measurements, as demonstrated in red blood cell and cancer cell re-
constructions. Importantly, this trade-off reflects a deliberate design
choice: unlike hardware-intensive methods such as coded wavefront
sensing, which can achieve ultra-high resolution through multiple
measurements, our single-shot approach prioritizes simplicity and
temporal resolution, making it particularly suitable for dynamic imaging
scenarios where speed and cost-efficiency are critical. Future work will
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aim to bridge the resolution gap by incorporating deep-learning-based
super-resolution strategies, physics-informed priors, and advanced
denoising architectures with multi-scale training, thereby enhancing
spatial fidelity while maintaining computational efficiency and robust-
ness to noise.

4.3. Training versus inference: understanding the single-shot nature of our
approach

A critical aspect of our methodology that requires clear explanation
is the fundamental distinction between the training phase and the
inference phase, which directly addresses why our approach can be
considered a true single-shot system despite requiring off-axis data
during training. During the training phase, our unsupervised diffusion
model learns the complex mapping relationship between in-line holo-
graphic patterns and their corresponding quantitative phase distribu-
tions using unpaired datasets. This training process requires access to
both in-line holograms (captured in cost-effective Gabor mode) and
high-quality reference phase images (obtained from off-axis digital ho-
lographic reconstruction). The off-axis measurements serve exclusively
as reliable ground truth targets that enable the model to understand the
relationship between simple holographic interference patterns and the
underlying cellular phase information. This training phase represents a
one-time investment in computational learning that establishes the
model’s reconstruction capabilities.

The inference phase, however, operates fundamentally differently
and represents the true operational mode of our system. Once training is
completed, the model requires only a single in-line hologram as input to
generate high-quality quantitative phase reconstructions. No off-axis
measurements, complex optical alignments, or additional reference
data are needed during actual use. This single-input, single-output
operation definitively qualifies our approach as a single-shot system for
practical deployment. The key advantage of this paradigm is that the
computational complexity and data requirements are front-loaded into
the training phase, while the operational phase remains remarkably
simple and cost-effective. A single trained model can be deployed across
multiple simple in-line holographic setups, transforming basic Gabor-
mode systems into quantitative phase imaging platforms without
requiring expensive off-axis infrastructure at each deployment location.
This represents a fundamental shift from traditional approaches where
each measurement location must be equipped with complex optical
systems.

4.4. Advantages and limitations of the proposed approach

Our unsupervised diffusion model demonstrates several compelling
advantages over existing phase reconstruction methodologies. The
approach exhibits superior generalization capabilities across diverse
cellular morphologies, as demonstrated by successful reconstruction of
multiple cancer cell lines without requiring cell-specific training. The
model’s robustness under varying propagation distances and its ability
to maintain performance with limited training data highlight its prac-
tical applicability in resource-constrained environments. Furthermore,
the unsupervised learning framework eliminates the need for extensive
labeled datasets, significantly reducing data preparation overhead
compared to supervised approaches. The iterative denoising process
inherent to diffusion models provides enhanced noise resilience and
reconstruction stability compared to single-pass GAN-based methods.
However, limitations include increased computational requirements
during training and inference compared to traditional analytical
methods, sensitivity to extreme defocus conditions particularly at high
magnifications, and the current restriction to learned optical parameter
ranges. The model’s performance degradation with wrapped phase data
also indicates limitations in handling certain phase imaging scenarios.
Despite these constraints, the balance of reconstruction quality, prac-
tical deployment feasibility, and cost-effectiveness positions our



S. Park et al.

approach as a viable solution for quantitative phase imaging
applications.

4.5. Future directions and potential improvements

Several promising avenues exist for enhancing the capabilities and
applicability of our diffusion-based phase reconstruction framework.
Integration of physics-informed constraints into the diffusion process
could improve reconstruction accuracy by incorporating known optical
propagation principles, potentially addressing current limitations with
extreme defocus conditions and wrapped phase handling. Multi-scale
training strategies using different magnifications and imaging parame-
ters could enhance generalization across diverse optical configurations,
reducing the need for system-specific retraining. Advanced attention
mechanisms and transformer architectures could improve the model’s
ability to capture long-range spatial dependencies in phase distributions,
potentially enhancing resolution capabilities. Real-time optimization
through model compression techniques, knowledge distillation, and
specialized hardware acceleration could reduce inference times to
enable true real-time applications. Additionally, extending the frame-
work to handle 3D phase reconstruction and multi-wavelength imaging
could broaden its applicability to advanced holographic microscopy
techniques. Incorporation of uncertainty quantification mechanisms
would provide confidence measures for reconstruction quality, enabling
automated quality control in clinical applications. Finally, development
of domain adaptation strategies could facilitate rapid deployment across
different biological specimens and imaging systems without requiring
extensive retraining, making the technology more accessible for diverse
research and clinical environments.

5. Conclusion

This study introduces the first unsupervised diffusion model for
automated phase image reconstruction from single-shot in-line holo-
grams, addressing the fundamental twin image problem that has long
limited Gabor holography applications. Our computational framework
successfully eliminates the need for expensive off-axis optical setups
while maintaining reconstruction fidelity comparable to traditional
complex systems. The key breakthrough lies in enabling effective
training on unpaired hologram-phase datasets through integrated cycle-
consistency and denoising modules. This approach demonstrates supe-
rior performance compared to existing unsupervised methods (Cycle-
GAN, UNIT) and maintains exceptional reconstruction quality even with
severely limited training data—a critical advantage over supervised
approaches that suffer significant degradation under data-constrained
conditions. Particularly notable is the model’s remarkable generaliza-
tion capability across diverse biological specimens. The framework
successfully reconstructs phase images from various cancer cell mor-
phologies not encountered during training and maintains robustness
across different propagation distances, demonstrating its practical
applicability in real-world imaging scenarios where precise optical
control may be challenging. Our approach represents a paradigm shift
from hardware-based to computational solutions for quantitative phase
imaging. By transforming low-cost, simple optical measurements into
high-quality phase reconstructions through advanced Al algorithms, this
work democratizes access to quantitative phase microscopy for
resource-constrained environments and real-time applications. This
computational breakthrough opens new possibilities for compact digital
holography systems in biomedical research, clinical diagnostics, and
field applications, where cost-effectiveness, portability, and ease of
operation are paramount while maintaining the quantitative accuracy
required for meaningful biological analysis.
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