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Abstract

In this paper, the inductance of a sensorless PMSM (Permanent Magnet Synchronous Mo-
tor) drive system equipped with a periodic load torque compensator based on a wavelet
denoising and least-order observer with time-delay compensation is estimated in real-time.
In a sensorless PMSM system with constant load torque, the magnetically saturated induc-
tance value remains constant. This constant inductance error causes minor performance
degradation, such as a constant rotor position estimation error and non-optimal torque cur-
rent, but it does not introduce a speed estimation error. Conversely, in a sensorless PMSM
motor system subjected to periodic load torque, the magnetically saturated inductance error
fluctuates periodically. This fluctuation leads to periodic variations in both the estimated
position error and the speed error, ultimately degrading the load torque compensation
performance. This paper applies the maximum energy-to-Shannon entropy criterion for
the optimal selection of the mother wavelet in the wavelet transform to remove the motor
signal noise and achieve more accurate inductance estimation. Additionally, the coherence
and correlation theory is proposed to address the time delay in the least-order observer
and improve the time delay. A self-saturation compensation method is also proposed to
minimize periodic speed fluctuations and improve control accuracy through inductance
parameter estimation. Finally, experiments were conducted on a sensorless PMSM drive
system to verify the inductance estimation performance and validate the effectiveness of
vibration reduction.

Keywords: PMSM; inductance; wavelet denoising; least-order observer; coherence- and
correlation-based time-delay estimation

1. Introduction
Electrical motors have played a crucial role in technological advancements for over

a century. As technological progress accelerates, the applications of electrical motors
are rapidly expanding. Advances in modern digital computers, along with recent devel-
opments in power electronics and semiconductor devices, have made groundbreaking
contributions to the design and control of electric motors. Among them, permanent magnet
synchronous motors (PMSMs) are widely used due to their high efficiency and lightweight
characteristics, in applications ranging from household appliances to automotive drives.
Field-Oriented Control (FOC) is primarily employed for high-performance operation in
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PMSM drive systems, which necessitates real-time knowledge of the rotor’s position.
However, practical issues such as mounting constraints, high sensor cost, and the risk of
catastrophic control failure in the event of a fault have spurred intensive research into
sensorless control methods that eliminate the need for a direct position sensor. Sensorless
control techniques mainly fall into two categories: current model-based methods and
extended back-EMF-based methods. Recently, the latter has been increasingly applied due
to the use of Arctan calculations in microprocessors, which eliminate the limitations of
input variables and provide fast tracking ability [1–4].

When the external load torque is constant, the rotor position estimation error is
constant because the torque component current and inductance parameter error due to
magnetic saturation are constant. This constant rotor position error has a negligible effect
on the estimation speed error. However, when periodic load torque occurs, the inductance
parameters also undergo periodic fluctuations, resulting in periodic fluctuation components
in both the position and speed estimation errors. That is, in environments with a large
magnitude and high fluctuation rate of the load torque, rather than the ideal situation
of a small and stable load torque, the change in inductance increases, leading to larger
estimation position errors and a degradation of the overall motor system’s control precision.
Particularly in environments directly exposed to external vibrations and loads, such as
motors near engines and powertrain systems, household pumps, and compressors, the
control performance can rapidly deteriorate [2].

Analyzing the external load pattern and applying an appropriate compensation cur-
rent can mitigate the effects of load torque fluctuation. However, applying this method may
increase the ripple in the estimated speed due to the magnetic saturation of the inductance
as the amount of compensation current increases. If appropriate compensation control
considering this is not performed, it can lead to mechanical instability and NVH (Noise,
Vibration, and Harshness) issues in the entire motor system. Therefore, the precision of sen-
sorless control can be improved by accurately estimating the actual inductance magnitude
and performing real-time control in a closed-loop manner [5,6].

Previously, attempts were made to estimate the magnitude of the inductance using
mathematical model-based observers to compensate for the magnetic saturation problem
caused by inductance variation. However, such approaches were sensitive to the back-EMF
(electromotive force constant) and drive output voltage fluctuations because they used the
estimated rotor position and speed information during sensorless control. Furthermore,
even with an appropriate back-EMF constant, when exposed to periodic load torque
fluctuations, the estimated inductance faced problems such as noise and time delay, which
could degrade system stability and speed estimation performance [7–9].

Wavelet transform is increasingly being used for modeling, analysis, and control of
electric motor drives in high-performance applications. Unlike traditional Fast Fourier
Transform (FFT) and Short-Time Fourier Transform (STFT), wavelet transform has been
implemented in several technologies for high-performance control and diagnostics of
systems like Permanent Magnet Synchronous Motor (PMSM) drives, Brushless DC motor
drives, and induction motor drives. Chaplais et al. [10] developed an online wavelet-
based noise reduction algorithm for a 3-phase PM Brushless DC motor drive used in
a reaction wheel system. This wavelet-based algorithm was implemented to denoise the
feedback signal of the Brushless DC motor drive. Khorbottly et al. [11] developed a wavelet-
based real-time noise reduction technique implemented for position sensorless control
of Switched Reluctance Motor (SRM) drive systems. Song et al. [12] proposed a Wavelet
Neural Network (WNN) based speed estimation method for sensorless control of PM
Brushless DC (BLDC) motor drives. However, the drive system integrated with the WNN-
based speed estimator showed unsatisfactory performance during high-speed operation
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of the Brushless DC motor due to the offline training of the network. Khan et al. [13]
developed and implemented a hybrid Wavelet Packet Transform (WPT) and Artificial
Neural Network (ANN) based fault diagnosis and protection technique for inverter-fed
IPM synchronous motors. The stator currents of various fault and healthy conditions of
IPMSM were pre-processed by WPT. The second-level WPT coefficients of the stator current
were used as inputs to a 3-layer feedforward neural network. Additionally, Khan et al. [14]
proposed a new wavelet-based multi-resolution PID controller for precise speed control
of IPMSM drives under system uncertainties. The proposed controller is based on the
multi-resolution decomposition of speed error between the command and actual speed
using Discrete Wavelet Transform (DWT). Control signals were generated using wavelet
transform coefficients of speed error at various frequency sub-bands of the DWT tree.
Based on the above discussions, it can be concluded that there is a trend of recent research
activities focusing on the application of wavelet transform in motor drives.

Selection of an appropriate wavelet and the optimal decomposition level are important
criteria in signal denoising. A major challenge when using wavelet transforms is choosing
the most suitable mother wavelet for a given task, because different mother wavelets ap-
plied to the same signal can yield different results. To judge the similarity between a signal
and a mother wavelet more precisely, quantitative approaches have been proposed in recent
years. Minimum Description Length (MDL) was proposed by N. Saito [15] as a criterion for
selecting the optimal mother wavelet for noise suppression and signal compression. MDL
theory states that, among a set of candidate models, the best model is the one that provides
the shortest combined description of the data and the model itself. Hamid et al. [16] applied
MDL as a guideline for selecting the most suitable mother wavelet to compress power
disturbance data. Using the MDL criterion, Symlet7 was found to outperform other mother
wavelets for most power disturbance signals. Khan et al. [14] applied the MDL criterion in
a study on protection of three-phase interior permanent magnet synchronous motors and
selected the most suitable mother wavelet for that analysis; db3 was chosen as the mother
wavelet for the wavelet packet transform. In addition, the maximum cross-correlation
criterion has been applied for denoising ECG signals. Singh and Tiwari [17] investigated
ECG denoising using db8, which was selected according to the maximum correlation
criterion. Yan [18] proposed the energy-to-Shannon-entropy ratio criterion and the MinMax
information criterion to select the most suitable mother wavelet for bearing fault detection.
The energy-to-Shannon-entropy ratio criterion refers to maximizing the amount of energy
while minimizing the Shannon entropy of the corresponding wavelet coefficients. The
MinMax information criterion considers a combination of criteria including minimum
joint entropy, minimum conditional entropy, minimum elastic entropy, maximum mutual
information, and maximum correlation coefficient. Using the energy-to-Shannon entropy
ratio and the MinMax information criteria, reverse biorthogonal 5.5 was chosen as the
mother wavelet. Kankar et al. [19] also applied the maximum energy-to-Shannon entropy
criterion for bearing fault detection. For thresholding approaches, all wavelets within each
wavelet family must be considered to test denoising performance. Therefore, performance-
based wavelet selection methods are inefficient and time-consuming when optimizing
between selecting lower vanishing moments and performance measures. To avoid this
cumbersome procedure, this paper uses the maximum energy-to-Shannon entropy criterion
as the method for selecting the optimal mother wavelet for wavelet denoising.

This paper investigates a real-time inductance estimation method for a sensorless
PMSM drive based on wavelet denoising and a least-order observer to minimize rotor
position and speed errors and compensate for external periodic load-torque variations. To
reduce uncertainty caused by flux saturation and improve real-time control performance,
motor currents are filtered using a wavelet transformation. The motor inductance is then
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estimated using a least-order observer that incorporates coherence- and correlation-based
time-delay estimation to reduce time delay, and a compensation control for flux-saturation
is applied. The proposed least-order observer with coherence- and correlation-based time-
delay estimation aims to shorten the delay of observer and thereby improve the accuracy
of the estimated inductance. To validate the flux saturation compensation method and
assess control performance, a sensorless PMSM drive system is modeled, and experiments
are conducted. Under periodic load-torque conditions, applying the estimated inductance
from the proposed method for compensation control is shown to reduce sensorless speed
estimation errors and to improve the system’s frequency response characteristics and
NVH performance.

2. Magnetic Saturation of Sensorless Control
Generally, the voltage equations in the dq synchronous frame for vector control of

a PMSM are given by (1),[
vd

vq

]
=

[
Ra + pLd −ωLq

ωLq Ra + pLd

][
id
iq

]
+

[
0

ωψ

]
(1)

where Ra, ψ, and p denote the stator resistance, the back-EMF constant, and the differential
operator, respectively. Ld, Lq are the d- and q-axis inductances, vd, vq are the stator
voltages, and id and iq are the stator currents in the dq synchronous reference frame.
Ignoring the difference between the estimated rotor speed and the actual rotor speed,
(1) can be transformed into the γδ-axes using the extended back-EMF representation.

The voltage equation can then be written as [2][
vγ

vδ

]
=

[
Ra + pLd −ωLq

ωLq Ra + pLd

][
iγ

iδ

]
+

[
eγ

eδ

]
(2)

where eγ = −Eexsinθe, eδ = −Eexcosθe, and Eex = ω
[(

Ld − Lq
)
id + ψ

]
−
(

Ld − Lq
) diq

dt .
Here vγ and vδ are the stator voltages, iγ and iδ are the stator currents, and eγ and eδ are
the extended back-EMFs in the estimated γδ synchronous reference frame, which account
for the rotor position error.

Using eγ and eδ, the rotor position error can be determined.

θ̂e = tan−1

(
−

θ̂γ

θ̂δ

)
∼= −

êγ

Eex
(3)

The estimated speed, denoted as ω̂r, can be acquired through a PI controller by using
the estimated rotor position error, θ̂e, as the input. To reduce noise, a low-pass filter is
applied. Additionally, the estimated rotor position, θ̂, can be calculated by integrating the
estimated speed.

Ensuring precise sensorless control requires accurate identification of parameters such
as resistance and inductance, as described in (2). In systems subjected to significant periodic
loads, such as pumps or compressors, magnetic saturation causes a mismatch between the
actual q-axis inductance Lq and its estimated value L̂q, which in turn introduces errors in
rotor position estimation.

To compensate for these deviations caused by magnetic saturation, (2) can be reformu-
lated in terms of the extended back-EMF components eγ, eδ:[

eγ

eδ

]
=

[
vγ

vδ

]
−
[

Ra + pLd −ωL̂q

ωL̂q Ra + pLd

][
iγ

iδ

]
+

[
∆eγ

∆eδ

]
(4)
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where ∆eγ = −p∆Ldiγ + ω∆Lqiδ, and ∆eδ = −p∆Ldiδ − ω∆Lqiγ. Here, ∆Ld and ∆Lq

represent the errors in the d- and q-axis inductances, respectively, defined as the difference
between the actual inductance and its estimated value. In practical systems, eγ and eδ are
affected by ∆eγ and ∆eδ, which incorporate the inductance errors. As a result, both rotor
position error and speed ripple increase.

Consequently, since the dominant term contributing to position estimation error
is ω∆Lqiδ, compensating for variations in the q-axis inductance which is the primary
parameter affected by magnetic saturation can effectively reduce rotor position error and
mitigate speed ripple [2].

3. Real-Time Inductance Estimation Using Wavelet Denoising
and Least-Order Observer with Time-Delay Compensation
3.1. Signal Denoising by Discrete Wavelet Transform

When wavelet transform is applied to signal processing, the general procedure is as
follows. First, the signal is decomposed using the wavelet transform to obtain the wavelet
coefficients. Then, depending on the requirements, the wavelet coefficients are processed.
Finally, the signal is reconstructed through the inverse wavelet transform [2].

The application of wavelet transform in signal denoising can be described as follows.
When the noise is stationary, an empirically recorded signal corrupted by additive noise
can be expressed as [20]

x(t) = s(t) + σn(t) (5)

where x(t) is the noisy signal, s(t) is the true noise-free signal, n(t) is an independent
normal random signal, and σ represents the noise intensity in x(t). The noise is generally
modeled as a stationary, independent, zero-mean white Gaussian variable.

The objective of denoising is to reconstruct the original signal s(t) from a finite set of
values of x(t), without assuming any specific structure of the signal. A common approach
to denoising models the noise as a high-frequency component superimposed on the original
signal. Several wavelet-based denoising techniques have been proposed, among which
thresholding is a simple and effective method. In practice, the fundamental principle of
wavelet denoising for extracting the ideal components of a signal corrupted by noise lies in
estimating the noise level. The estimated noise level is then used to set a threshold for the
small coefficients, which are assumed to correspond to noise.

The signal denoising procedure based on the Discrete Wavelet Transform (DWT)
consists of three stages: signal decomposition, thresholding, and signal reconstruction.
Orthogonal DWT is particularly well suited for denoising, since the decomposition is
additive; consequently, the analysis of the noisy signal is equivalent to the sum of the
analyses of the true signal and the additive noise. Moreover, when the noise is assumed to
be white, the detail coefficients at all scales essentially correspond to white noise with the
same variance.

The core of wavelet denoising lies in selecting an appropriate threshold. In general,
the threshold is determined by the noise intensity σ, as defined in (5). Once the noise
intensity has been estimated, various mathematical models can be employed to determine
the threshold value. Thresholding is typically applied in one of the following two ways.
Let ω denote the original wavelet coefficient, η(ω) the thresholded coefficient, and T the
threshold value. Define the indicator function as [20–22]

I(x) =

{
1, x is true
0, x is f alse

(6)
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(1) Hard Thresholding: In this method, wavelet coefficients with absolute values below
the threshold are set to zero. This approach leaves coefficients larger than the threshold
unaffected, which may cause instability and sensitivity to small changes in the signal.

η(ω) = ωI(|ω| > T) (7)

(2) Soft Thresholding: In this method, the retained wavelet coefficients are reduced by the
threshold value:

η(ω) = (ω − sgn(ω)T)I(|ω| > T) (8)

3.2. Mother Wavelet Selection Using Maximum Energy-to-Shannon Entropy Criterion

The mother wavelet serves as the basis for analyzing a given signal in wavelet trans-
form. Since the results obtained from the wavelet transform are influenced by the choice of
the mother wavelet, selecting an optimal one is of critical importance. In this study, the
energy-to-Shannon entropy criterion, which is relatively simple to compute and widely
used for condition monitoring and fault diagnosis, was adopted.

The energy content of a signal is a measure that uniquely characterizes the signal. The
amount of energy in a continuous-time signal x(t) can be calculated as [18]

Ex(t) =
∫

|x(t)|2dt (9)

When the signal is represented by discrete samples x(i), where i = 1, 2, . . . , N, the
signal energy can be expressed as

Ex(i) =
N

∑
i=1

|x(i)|2 (10)

Here, N denotes the length of the signal expressed as the number of data points, and x(i)
represents the signal amplitude.

The energy content of a signal can be calculated using its wavelet coefficients and is
expressed as

Eenergy =
x

|W(s, τ)|2dsdτ (11)

This indicates that the energy associated with a specific scaling parameter s can be
written as

Eenergy(s) =
∫

|W(s, τ)|2dτ (12)

For sampled data, the energy can be expressed as

Eenergy(s) =
N

∑
i=1

|W(s, i)|2 (13)

where N is the number of wavelet coefficients and W(s, i) denotes the wavelet coefficient.
If the signal contains a dominant frequency component corresponding to a specific scale
s, the wavelet coefficients at that scale will exhibit relatively high magnitudes at the time
when this frequency component occurs. Consequently, applying the wavelet transform to
a signal enables the extraction of the energy associated with such frequency components.

The energy distribution of wavelet coefficients can be quantitatively described using
Shannon entropy. The Shannon entropy of a signal is defined as

Eentropy(s) = −
N

∑
i=1

pilog2 pi (14)
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where pi represents the energy probability distribution of the wavelet coefficients and is
given by

pi =
|W(s, i)|2

Eenergy(s)
(15)

Since the criterion for selecting a mother wavelet aims at maximization, the objective
is to extract the maximum possible energy from the analyzed signal while simultaneously
minimizing the Shannon entropy of the corresponding wavelet coefficients. Accordingly,
the energy-to-Shannon entropy ratio R(s) is defined as

R(s) =
Eenergy(s)
Eentropy(s)

(16)

A larger value of R(s) indicates that the corresponding mother wavelet is more suitable for
signal analysis.

3.3. Proposed Least-Order Observer with Coherence- and Correlation-Based
Time-Delay Compensation

In conventional model-based compensation methods for addressing flux saturation
errors, the PMSM voltage equations are typically expressed in terms of inductance. The
inductance is then predicted through an observer and fed back to compensate for flux
saturation. For observer modeling, the input and output variables of the target control
system are defined, and specific internal parameters are indirectly estimated based on
a mathematical model [3].

When the system is represented by a state equation with two states, the state-space
model can be expressed in matrix form as follows:[ .

x1
.
x2

]
=

[
A11 A12

A21 A22

][
x1

x̂2

]
+

[
B1

B2

]
u + K

[
0

.
y − .̂

y

]
y = Cx

(17)

where x1 and x2 denote the variables to be estimated, u represents the input of the state
equation, and y is the output. A, B, and C are weighting constants associated with each
state variable, K denotes the observer gain, and the symbol ˆ indicates estimated variables.

In a sensorless system, since the variable to be estimated for flux saturation compensa-
tion is the inductance, the state x1 can be considered measurable, and only a single state x2

needs to be estimated. Thus, the observer can be configured as a least-order observer. Com-
pared to a full-order observer, the least-order observer offers the advantage of a simpler
structure, as fewer states need to be estimated.

By reformulating (17) such that
.
x2 becomes the state to be estimated, the dynamics

of the estimated state
.̂
x2 can be expressed as follows, considering the error between the

estimated and actual parameters:

.̂
x2 = A21x1 + A22 x̂2 + b2u + K

( .
y −

.
ŷ
)

(18)

The derivative of estimation error
.
e can then be derived as

.
e =

( .
x2 −

.̂
x2

)
= (A22 − KA12)e (19)

Here, if A12 and A22 satisfy the observability condition, the placement of the ob-
server poles can be determined according to the design of the observer gain K. Therefore,
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K must be selected such that the system remains stable, ensuring that the estimation error
e converges to zero.

To eliminate the derivative term in (19) and simplify the expression, a new parameter
ξ is introduced, redefining x̂2 as

x̂2 = ξ + Ky (20)

Substituting (20) into (19) and rearranging yields

.
ξ =

.
x̂2 − K

.
y = (A22 − KA12)ξ + (B2 − KB1)u + (A21 − KA11)y (21)

The value of the parameter ξ can be obtained by applying an integrator to the result of (21).
Finally, substituting ξ into (20) allows the estimation of the target variable x̂2.

For sensorless PMSM drive model-based inductance estimation, by applying the d-axis
voltage equation from (1) to (17), a state-space model for estimating the q-axis inductance
which primarily affects flux saturation can be expressed as follows:[ .

iγ.
L̂q

]
=

[
− Ra

Ld

ωiδ
Ld

0 s

][
iγ

L̂q

]
+

[
1

Ld

0

]
vγ + K

[
0

.
y − .̂

y

]

y = Cx =
[
1 0

][ iγ

Lq

]
= iγ

(22)

where iγ corresponds to the observable variable y, which represents the output of the state
equation; L̂q corresponds to the variable x2, which represents the q-axis inductance to be
estimated; and vγ corresponds to the input variable u of the state equation, representing
the γ-axis voltage. In addition, each component of the state matrix, serves as weighting
constants of the state equation, is represented as A11, A12, A22, and B1 in (17).

Using (20) and (21), the derivative of the parameter ξ can be expressed as

.
ξ =

.̂
Lq − K

.
iγ (23)

.
ξ =

(
s − K

ωiδ

Ld

)
ξ − K

Ld
vγ +

((
s +

Ra

Ld

)
K − ωiδ

Ld
K2
)

iγ (24)

From (24), the parameter ξ can be approximated as

ξ ≃
Raiγ + Ld

.
iγ − vγ

ωiδ
(25)

Therefore, by substituting (23) into (25), the estimated q-axis inductance, which is the
observer’s target variable, is obtained as

x̂2 = L̂q = ξ + Ky =
Raiγ + Ld

.
iγ − vγ

ωiδ
+ Kiγ (26)

If this estimation equation is directly applied, the derivative term introduces signif-
icant noise and degrades the harmonic characteristics. Therefore, as expressed in (27),
introducing a first-order low-pass filter minimizes the influence of the pole term in the
numerator, thereby improving the noise performance of the estimated parameter. Further-
more, by adding the component obtained by multiplying the observer gain K with the state
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equation output variable iγ, the offset and gain of the estimated parameter can be adjusted,
leading to a reduction in system error.

L̂′
q =

(
Raiγ + Ld

.
iγ − vγ

ωiδ

)(
1

1 + τ0s

)
+ Kiγ (27)

where τ0 denotes the time constant of the first-order low-pass filter.
However, the additional lag components and signal distortion introduced by the

low-pass filter and the associated computational process increase the time delay, thereby
degrading the accuracy of the real-time control loop. In particular, when periodic load
signals or overloads are applied due to external conditions, cumulative errors caused by
the time delay occur, leading to deviations from the actual values.

To address these issues, this study applies a time-delay compensation method based on
coherence and correlation slope to the least-order observer. This approach aims to improve
the accuracy of parameter estimation while maintaining the simplicity and efficiency of the
observer structure.

When the original reference signal is defined as

y1(t) = Asin(2π f0t) (28)

the signal estimated through the observer, y2(t), exhibits distortion along with a delay of d
steps and can be expressed as

y2(t) = ŷ1(t) = s1(t − dTs) + ε(t) (29)

where f0 = 16.67 Hz is the fundamental frequency, Ts is the sampling period, d represents
the actual delay in steps, and ε(t) denotes measurement noise and DC offset. By accurately
estimating the time delay d̂ = d and applying time-delay compensation, the performance
of the observer-based inductance estimation can be significantly improved.

The target signal was selected as a periodic signal with at least n cycles to ensure
estimation accuracy and averaging. The delayed signal y2(t) can be defined as a set of
N = n + 1 segments as follows:

y2(t) =
N⋃

k=1

y2,k(t), k = 1, . . . , n + 1 (30)

The magnitude-squared coherence between the original signal y1(t) and the delay-
compensated signal y2,k(t + δTs) is calculated as [23]

Cxy( f , δ) =
|Pxy( f , δ)|2

Pxx( f )Pyy( f , δ)
, 0 ≤ Cxy( f , δ) ≤ 1 (31)

where Pxy( f , δ) is the cross-spectral density, and Pxx( f ) and Pyy( f , δ) are the auto-spectral
densities of y1(t) and y2,k(t + δTs), respectively.

For each segment k, by varying the delay compensation step δ ∈ [1, 2, . . . δmax], the
candidate step δcoh

k that maximizes the coherence for each segment is determined as

δcoh
k = arg max

δ∈[1,2,... δmax]

Cxy( f , δ) (32)

While applying coherence alone can reveal the linear relationship between two signals
in specific frequency bands, it represents a statistical average over frequency and does not
capture noise, nonlinear distortion, or local variations in the time domain. Therefore, to
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compensate not only for frequency-domain linearity but also for signal nonlinearity and
real-time degradation, the Pearson correlation coefficient between the two signals in the
time domain is analyzed and corrected, as expressed in [24]

ρk(δ) =
∑t (y1(t)− y1)(y2,k(t + δTs)− y2,k)√

∑t(y1(t)− y1)
2
√

∑t(y2,k(t + δTs)− y2,k)
2

(33)

To further enhance the sensitivity of signal alignment and improve the precision of
time-delay estimation, the slope (first derivative) of the correlation curve is estimated to
identify the inflection point, as defined by

gk(δ) =

∣∣∣∣ d
dδ

ρk(δ)

∣∣∣∣ (34)

From this analysis, the step δcor
k that minimizes the average slope of the correlation curve

for each segment is selected:
δcor

k = min
δ

gk(δ) (35)

The reference step δcor is obtained by averaging the results across all segments:

δcor =
1

N − 1

N−1

∑
k=1

δcor
k (36)

Finally, among the coherence-based candidate steps, the value closest to the average
Pearson correlation step δcor is selected as the final estimated delay step d̂. Based on (36),
the estimated time delay is then determined as:

d̂ = arg min
δcoh

k

∣∣∣δcoh
k − δcor

∣∣∣ (37)

Thus, by first setting a candidate region using coherence and then refining the estimate
using the slope of the Pearson correlation to ensure robustness against noise and distortion,
the precision of the time-delay estimation is improved.

τ̂m = d̂Ts (38)

Based on the previously estimated time-delay information, a time-delay compensator
including the feedback path was implemented to correct the observer output. By utilizing
the dynamic model of the observer, the output is advanced by the estimated delay τ̂m,
enabling a real-time estimation model. This can be expressed as

Ŷ(s)
Y(s)

= Gm(s)e−τ̂ms (39)

where Gm(s) is the transfer function of the original model, and e−τ̂ms represents the delay
compensation term.

Consequently, the final model output including the time-delay compensator can be
expressed in the time domain as

ŷ1,comp(t) = y2(t + τ̂m) (40)

By compensating the observer signal s2(t) by τ̂m, ŷ1(t) becomes time-aligned with
the original signal y1(t). As a result, the compensated output ŷ1(t) estimates the original
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signal instantaneously, significantly reducing estimation errors caused by the observer
output delay.

Based on the algorithms presented in this chapter, the overall block diagram of the
flux-saturation-compensated sensorless PMSM drive system designed to enhance induc-
tance estimation performance is illustrated in Figure 1. In the inductance estimator, wavelet
denoising selected according to the maximum energy-to-Shannon entropy criterion is em-
ployed to minimize distortions in the input signal of the least-order observer. In addition,
a coherence- and correlation-based real-time delay compensator is applied to correct the
time delay and offset errors in the observer output signal. Through this approach, induc-
tance can be estimated with high accuracy, and the estimated flux value is fed back to
suppress speed ripple and vibration.

Figure 1. Overall block diagram of the flux-saturation-compensated sensorless PMSM drive system.

4. Experiment Results
Simulations were carried out using PSIM software to analyze and compare the in-

ductance estimation performance and speed ripple characteristics according to inductance
estimation and compensation methods under flux-saturation conditions in sensorless
PMSM control. As shown in the control simulation block diagram in Figure 2, the main
MCU-based controller equivalent to the actual dual-motor drive system was implemented.
The dual motors share identical specifications: Motor model 1 corresponds to the machine
employed for the sensorless drive, while motor model 2 serves as the load-torque genera-
tion machine. The controller was modeled and compiled in C language using the General
DLL block in PSIM, generating a DLL file for co-simulation. In addition, specific signal-
processing functions, such as wavelet denoising and time delay analysis, were interfaced
with MATLAB R2024b for data processing and system integration.

The main parameters of the PMSM applied to the simulation and experiments are
presented as shown in Table 1.
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Figure 2. Detailed Block Diagram for the Control Simulation Environment.

Table 1. Motor parameters.

Parameter Value Unit

Rated power 3 kW
DC link voltage 400 V

Winding resistance 0.3 Ω
Number of poles 6 -
Number of slots 27 -

d-axis inductance 1.5 mH
q-axis inductance 2.0 mH

Figure 3 shows the simulation results of the inductance magnitude and the corre-
sponding speed when the motor is operated at 1000 rpm (16.67 Hz) under load-torque
compensation current. When the load-torque compensation current along the q-axis varies
from 0 A to 30 A due to external periodic loads, as shown in Figure 3a, the real inductance
continuously changes due to flux saturation, as indicated by the black line in Figure 3b.
The blue line in Figure 3b represents the inductance estimated using the conventional
least-order observer model, which is used to compensate for the inductance variation
caused by flux saturation. In this least-order observer-based inductance estimation, the
influence of the low-pass filter and integration introduces time delay and DC offset, in-
creasing the uncertainty of the parameter estimation. If this varying inductance component
is not properly estimated and compensated, the estimated speed exhibits significant ripples
exceeding ±100 rpm, accounting for more than 10% of the speed reference, as shown
in Figure 3c.

The primary cause of the issues is, as previously described, the distortion of the input
signal to the conventional least-order observer and the time delay in its output. To minimize
the distortion of the observer input signal, a wavelet filter was applied as a preprocessing
stage. Wavelet denoising was performed on the collected voltage and current data using
the maximum energy-to-Shannon entropy criterion to select the optimal mother wavelet
function. The candidate mother wavelets tested for this purpose included Daubechies,
Symlet, Coiflet, and Biorthogonal wavelets. In addition, considering the signal’s noise
level for the selected mother wavelet, the decomposition level was set to 4 for current and
8 for voltage.

Table 2 presents the set of candidate mother wavelets and the mother wavelets selected
based on the maximum energy-to-Shannon entropy criterion. For each candidate, the
energy and Shannon entropy of the motor signals were computed, and the corresponding
maximum energy-to-Shannon entropy ratio R(s) was evaluated. The selected mother
wavelets, db1 as a Daubechies variant and Sym4 as a Symlet variant, were subsequently
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employed for real-time noise filtering of current and voltage signals in the sensorless PMSM
drive system.

(a) 

(b) 
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Figure 3. Simulation results when the load fluctuated at 16.7 Hz for (a) δ-axis current, (b) q-axis
inductance, and (c) estimated speed.

Table 2. Selection of mother wavelets for currents and voltage.

Candidate Wavelet R(s) (for Currents)

db1 392,069
db2 236,824

Sym4 259,718
Coif1 309,098

Bior1.3 267,255
Candidate Wavelet R(s) (for Voltage)

db1 106,884
db2 94,556

Sym4 244,786
Coif1 121,543

Bior1.3 54,602

Figure 4 presents the results with and without applying the wavelet filter using
the selected mother wavelet db1 for denoising the least-order observer input variables
Iγ and Iδ.
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(a) 

(b) 

Figure 4. Comparison of input current signals Iγ and Iδ (a) with wavelet filtering and (b) without
wavelet filtering.

Similarly, Figure 5 presents the results with and without applying the wavelet filter
using the selected mother wavelet Sym4 for denoising another input variable, Vγ.

(a) 

(b) 

Figure 5. Comparison of voltage signal Vγ (a) with wavelet filtering and (b) without wavelet filtering.

To improve the estimation accuracy of the conventional least-order observer, reliable
estimates are required not only to compensate for distortions in the input signals but also
for the time delay in the output signals. Therefore, to address the time-delay issue in
the output signals, simulations and experiments were carried out based on the proposed
methodology presented in Section 3.
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First, y1(t), y2(t) in (28) and (29) were divided into multiple segments, and candidate
values of the time delay were obtained by varying the delay in each segment and identifying
the point at which the coherence reached its maximum. In addition, within the time domain,
the transition region of the slope, where the correlation coefficient between the two signals
was maximized in each segment, was identified and corrected, thereby enabling accurate
estimation of the time delay even under non-stationary signals.

Figure 6 presents the coherence comparison results across segments for compensating
the output signal time delay in the least-order observer model. The number of segments N
in (30) was set to 10, and by varying the size of the time step for time-delay compensation,
the step size at which the maximum coherence occurred in each segment was identified as
a candidate time-delay step. Among these, the segments corresponding to the minimum
and maximum delay steps were excluded, and the remaining eight segment delay steps
were selected as the final candidate step δcoh

k .

Figure 6. Comparison of estimated time-delay steps obtained from segment-based coherence analysis.

Figure 7 presents the segment-based comparison results for selecting the step that
shows the highest linearity and correlation in the time domain, which cannot be fully
captured by coherence analysis. By considering the first derivative of the correlation
coefficient, the inflection point where the average slope of the curve was minimized was
identified, thereby enabling the determination of the exact time at which the time delay
was minimized in the time domain. Finally, based on the average of the results from the
ten segments, the reference step δcor was determined to be 22.3.

Figure 7. Inflection-point analysis of correlation coefficients across segments.

Finally, among the candidate steps obtained from the coherence-based analysis, the
value closest to the average correlation-based step δcor was selected and determined as
the final estimated delay step d̂. Accordingly, the final output delay time τ̂m was obtained
using (38), and the estimated time delay of the signals was compensated by applying
(39) and (40).
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Figure 8 presents the comparison results of the real and estimated inductance. Com-
pared to the uncompensated case, the compensated inductance estimate closely follows the
real signal without delay, and the estimation error caused by the observer output delay is
significantly reduced.

Figure 8. Comparison of real and estimated inductances.

Figure 9 and Table 3 present a comparison of the mean error (MSE) and root mean
square error (RMSE) of the time-delay estimates obtained by applying the proposed
coherence- and correlation-based approach and the conventional least-order observer.
The experimental results show that the proposed coherence- and correlation-based time-
delay estimation method significantly improves accuracy by simultaneously considering
both frequency- and time-domain signal characteristics.

Figure 9. Comparison of time-delay compensation results.

Table 3. Numerical results of time-delay compensation.

Case
Metrics

RMSE [H] MAE [H]

Least-order observer 1.6256 × 10−4 1.3710 × 10−4

Proposed 6.1186 × 10−5 4.8803 × 10−4

Figure 10 illustrates the experimental setup based on a motor testbed. For the ex-
periment, the compressor of a Sonata hybrid vehicle was disassembled, and two motors
were fabricated and utilized. A dual inverter was also developed to independently control
each motor. In addition, since the load was represented through torque control, a periodic
load torque current was generated by supplying q-axis current to the load motor, thereby
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emulating a varying load-torque environment. The inverter system for driving the motor
was implemented using a TI TMS320F28335 MCU. The IRFP4868PbF was employed as the
power MOSFET for the three-phase inverter, while ACS758KCB-150B sensors were used for
three-phase current measurement, providing sufficient margin to withstand potential spike
components during inverter switching. In addition, auxiliary circuits, including noise-
reduction filters and communication interfaces for motor drive control, were incorporated
into the experimental setup. Real-time data communication and monitoring between the
MCU and the PC were established via a serial communication interface. The output signals
of key variables, such as the estimated inductance and speed, were continuously monitored
using a four-channel digital-to-analog converter (DAC) and observed on an oscilloscope to
verify system performance.

 

Figure 10. Experimental testbed for real-time inductance estimation.

Figure 11 shows the experimental rotor speed results of the sensorless PMSM drive un-
der magnetic saturation induced by an external load. The motor was operated at a constant
speed of 1000 rpm, and without inductance estimation compensation, a ripple of approxi-
mately ±100 rpm was observed in the estimated speed. In the case of sensorless control
using the conventional least-order observer scheme based on the least-order observer, the
speed ripple was reduced to less than half compared with the uncompensated case; how-
ever, its magnitude still exceeded ±50 rpm. In contrast, when the proposed compensation
control was applied, the ripple amplitude was significantly reduced to within ±40 rpm.
These results demonstrate that the proposed control strategy effectively suppresses speed
fluctuations by approximately 20%, owing to its accurate estimation and compensation of
magnetic saturation.

 

(a) 

 

(b) 

Figure 11. Experimental results under magnetic saturation for (a) q-axis current and (b) speed
comparison with and without compensation.
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Figure 12 presents the experimental results comparing the vibration magnitude with
and without the proposed real-time magnetic saturation compensation. The motor speed
was increased from a low speed of 200 rpm up to 2400 rpm, and the tests were conducted
in both the horizontal and vertical directions. The experimental results show that when
the real-time inductance estimation-based flux-saturation compensation was applied, the
vibration magnitude was reduced by an average of 2–3 dB compared with the baseline,
which corresponds to the ‘Without compensation’ case. In particular, a reduction exceeding
5 dB relative to the baseline was observed in the low-speed region below 500 rpm. Since
the fluctuating load currents are applied under the same conditions regardless of speed,
the influence of inductance variation caused by flux saturation becomes more pronounced
at low speeds. Consequently, flux-saturation compensation is particularly effective in
reducing vibration in the low-speed region.

(a) 

(b) 

Figure 12. Vibration characteristics of sensorless PMSM drives with and without magnetic saturation
compensation in (a) horizontal and (b) vertical directions (dB reference: 10−5 (g)).

5. Conclusions
In this paper, a coherence- and correlation-based time delay compensation method

is proposed following wavelet denoising preprocessing to achieve accurate real-time in-
ductance estimation in a sensorless PMSM drive system. First, we employed a systematic
approach to select the optimal mother wavelet using the maximum energy-to-Shannon
entropy criterion in order to reduce noise in the PMSM drive system signals. Then, the
time delay in the output of the least-order observer is compensated using a coherence- and
correlation-based time delay estimation method. By applying the proposed technique, we
could achieve a relatively simple yet accurate real-time estimation performance for the
inductance parameters and experimentally verified that the sensorless control performance
was efficiently enhanced compared to the conventional method. The proposed technique
is expected to be utilized for parameter estimation and compensation control in various
types of motor control systems in the future, as it is suitable for real-time embedded control
system implementation due to its ability to adapt to diverse operating conditions, relatively
fast computation speed, and high accuracy.
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