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Abstract
Modern data centers increasingly employ multi-tenant deployment
models in which multiple applications or virtual machines share a
single physical server. However, existing tiered memory manage-
ment schemes classify pages solely by access frequency to govern
promotions and demotions across memory tiers without account-
ing for the distinct access patterns of latency-critical (LC) and best-
effort (BE) workloads. LC workloads demand low-latency service
yet lack sustained high-frequency access; consequently, frequency-
based tiering demotes LC data to slowermemory (SMem), degrading
responsiveness and violating service-level objectives (SLOs).

To address these challenges, we propose MTAT, an adaptive
tiered memory management framework that guarantees the SLO
of LC workloads while maintaining overall system performance
for BE workloads. Rather than relying solely on hotness-based
page placement, MTAT employs distinct policies for LC and BE
workloads by isolating them into dedicated fast memory (FMem)
partitions. Specifically,MTAT employs reinforcement learning to
identify the minimal FMem capacity necessary to satisfy stringent
SLOs, supporting rapid response to sudden demand surges, and uses
a simulated annealing algorithm to allocate the remaining FMem
fairly among co-located BE workloads. Compared to state-of-the-
art tiered memory page-placement solutions, MTAT improves the
maximum throughput of LC workloads by up to 1.7× and enhances
BE workloads’ fairness by up to 3.3×, all while incurring only a
19% throughput penalty at worst.

CCS Concepts
• Software and its engineering→ Main memory; • Computer
systems organization→ Processors and memory architectures.
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1 Introduction
Modern data centers increasingly employ multi-tenant deployment
models in which multiple applications or virtual machines share
a single physical server [1, 14]. To maximize resource utilization,
providers consolidate workloads onto fewer machines and adopt
tiered memory architectures [19, 25, 44] that combine a small, high-
speed tier (e.g., DRAM)with a larger, lower-speed tier (e.g., Compute
Express Link-based memory [3], Non-Volatile Memory [12]). Al-
though accesses to the slower tier (SMem) incur higher latencies,
these architectures mitigate such penalties by retaining frequently
accessed ("hot") pages in the fast tier (FMem) and relegating infre-
quently accessed ("cold") pages to SMem. Consequently, current
tiered memory systems present the heterogeneous memory pool as
a unified, large-capacity FMem, thereby minimizing overall latency
impacts.

The issue is that existing tiered memory management
schemes predominantly rely on page hotness–quantified by access
frequency–to govern promotions and demotions across memory
tiers. This frequency-driven approach delivers simplicity and strong
performance for memory-intensive best-effort (BE) workloads, but
it undermines latency-critical (LC) applications in consolidated,
multi-tenant settings. LC workloads inherently exhibit irregular,
bursty access patterns due to their direct interaction with end users,
causing their pages to appear cold relative to the steady, high-
intensity usage of BE workloads [13, 41]. As a result, LC pages
are frequently demoted to SMem, incurring substantial latency
penalties and making it increasingly difficult to satisfy the strict
service-level objectives (SLOs) of LC workloads when competing
with BE workloads for memory resources.

To address these challenges, we introduce MTAT, an adaptive
tiered-memory management framework that guarantees SLO com-
pliance for LC workloads while maintaining overall performance
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for BE tenants. Rather than relying on a uniform hotness-driven
policy,MTAT isolates LC and BE workloads into dedicated FMem
partitions. For LC workloads, it leverages reinforcement learning
to predict the minimal FMem allocation required to meet stringent
SLOs, thereby enabling rapid adaptation to sudden request surges.
The remaining FMem is then assigned among co-located BE work-
loads using a fairness-oriented simulated annealing (SA) algorithm.
MTAT periodically revisits these partitioning decisions to adapt to
the LC workload’s fluctuating demands, always prioritizing its SLO
requirements. Between repartition intervals,MTAT continuously
monitors FMem and employs workload-specific page exchanges
between FMem and SMem to ensure that each workload’s hottest
data remains resident in FMem.

We implement an MTAT prototype by separating its function-
ality into two components: a user-space daemon that determines
the memory partitioning policy and a kernel-space daemon that
enforces the actual partition assignment. Our experiments confirm
that MTAT adjusts the FMem allocation for the LC workload in re-
sponse to varying demands, consistently satisfying the workload’s
SLO. Compared with the state-of-the-art tiered memory system
page-placement solutions, TPP [25] and MEMTIS [23], MTAT in-
creases the LC workload’s maximum throughput by 73% and 34%,
respectively, while improving BE workloads’ fairness by 3.3× and
1.5×, respectively. Even whenMTAT prioritizes FMem for the LC
workload—thereby reducing FMem allocation for BE workloads–its
overall throughput decreases by at most 19%.

The key contributions are the following:

• We demonstrate that purely hotness-driven tiered memory
management is ill-suited for latency-critical workloads co-
located with best-effort workloads in multi-tenant environ-
ments, leading to substantial SLO violations.
• We proposeMTAT, an adaptive tiered-memory management
framework that explicitly addresses the heterogeneous ac-
cess patterns of LC and BE workloads, isolating fast memory
partitions to guarantee LC SLO while improving overall sys-
tem performance.
• We evaluate MTAT against state-of-the-art page placement
solutions and demonstrate its superiority by achieving up to
1.7× higher throughput for LC workloads and 3.3× improved
fairness for BE workloads, all while incurring minimal over-
head.

2 Motivation
2.1 Tiered Memory System in Multi-tenant

environments
Modern data centers increasingly employ multi-tenancy, allow-
ing applications and virtual machines to share CPU, memory, and
storage on the same server to enhance utilization and reduce oper-
ational overhead [1, 14, 17, 24]. To keep pace with rising workload
demands without incurring proportional hardware expenditures,
providers are consolidating an ever-growing number of tenants
onto fewer machines, steadily elevating consolidation ratios. While
this strategy yields substantial efficiency gains and cost savings,
it also intensifies memory pressure–a direct consequence of the
inherent scalability limits of modern DRAM modules [35].

To address this memory bottleneck, many providers now adopt
tiered memory architectures as a foundational element of their
server designs. In such systems, a high-performance "fast" tier
(FMem), typically composed of DRAM modules, is paired with a
higher-capacity "slow" tier (SMem)–often realized via NVM or CXL-
attached memory. Latency-sensitive portions of an application’s
working set reside in the FMem, while less-frequently accessed data
is placed in the SMem. However, because FMem capacity has not
kept pace with demand, multiple applications must compete for
constrained memory resources. With rising consolidation ratios in
modern multi-tenant data centers, FMem has become an ever-more
highly contended shared resource.

2.2 FMem Contention in Multi-Tenant LC/BE
Co-Locations

The heterogeneous workload characteristics typical of multi-tenant
environments exacerbate FMem contention. Prior work on tiered
memory systems has predominantly focused on identifying the
hottest pages and designing lightweight mechanisms to migrate
them between FMem and SMem [19, 23, 25, 26, 29, 32, 34, 39].
Commonly, these mechanisms periodically scan page-access coun-
ters to isolate high-frequency pages and apply migration policies
driven by recency or frequency thresholds. Such approaches im-
plicitly assume that servers execute memory-intensive, compute-
bound batch workloads (i.e., BE workloads) with relatively stable
and predictable demands over long intervals. In contrast, practical
multi-tenant deployments frequently co-locate these BE workloads
with short-lived, latency-critical workloads (i.e., LC workloads)
that prioritize rapid user responsiveness [21, 31, 43]. Although
LC workloads require low-latency access, they may not generate
sustained high-frequency memory accesses. Consequently, con-
ventional frequency-based tiering can inadvertently evict latency-
critical data into SMem, impairing LC responsiveness and risking
violations of SLOs.

Ultimately, LC data eviction arises from the inherently irregu-
lar access patterns of LC workloads. Figure 1 illustrates this effect
by showing maximum throughput across different FMem–SMem
allocation ratios, with load intensity varied to evaluate its impact
on performance. Our experiments employ a tiered memory sys-
tem with 32 GB of DRAM as FMem and 256 GB of emulated CXL
memory as SMem, managed by MEMTIS [23], a state-of-the-art
page placement policy. We subject four LC workloads–Redis, Mem-
cached, MongoDB, and Silo–to uniformly distributed requests for
60 s each. Although each workload’s absolute throughput differs ac-
cording to its access profile, all four exhibit a clear trend: throughput
degrades monotonically as available FMem diminishes. In contrast
to BE workloads, for which hot pages remain stable over long in-
tervals, LC workloads undergo abrupt, real-time-driven shifts in
data access. To preserve LC performance, it is essential to retain
their datasets in FMem as much as possible. Current tiered-memory
policies, however, rely solely on access-frequency heuristics; they
uniformly classify LC data as "cold" and evict it to SMem.

To quantify LC workload performance degradation when co-
located with a BE workload, we run Redis alongside the GAP Bench-
mark Suite’s single-source shortest-path (SSSP) benchmark under
MEMTIS, measuring Redis’s 99th-percentile latency (P99) while
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Figure 1: Tail latency of LC workloads as Kilo Requests Per Second (KRPS) increases. The red lines indicate the SLOs, determined
by the knee point of each curve under 100% FMem utilization (FMem 100%).
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Figure 2: Performance of Redis co-located with SSSP under
MEMTIS-managed tiered memory. The top plot shows the
imposed load on Redis in KRPS, with colored lines indicat-
ing the maximum throughput at different FMem allocation
levels (0%, 25%, 50%, 75%, and 100%). The middle plot presents
the P99 latency in milliseconds, with a red line representing
the SLO. The bottom plot illustrates the ratio of Redis data
stored in FMem over time.

monitoring its FMem allocation. Redis initially occupies 100% of
available FMem, then receives increasing load corresponding to
the maximum throughputs observed at FMem allocations of 0%,
25%, 50%, 75%, and 100% (per Figure 1). Figure 2 presents the re-
sulting load pattern, P99 latency, and FMem usage. At the start
of each run, MEMTIS promptly fills FMem with the SSSP dataset,
causing Redis’s resident pages in FMem to drop below 10%. Once
the load reaches the peak throughput corresponding to 25% FMem,
Redis’s P99 latency surges sharply–violating its SLO–even though
it could sustain this load with 25% FMem allocation. Even as the
load increases further, the proportion of Redis pages resident in
FMem remains consistently low. Thus, although Redis runs in a
tiered memory system with both FMem and SMem available, its
performance degrades to match that of operating exclusively on
SMem.

In summary, current tiered memory management policies pri-
oritize pages by access frequency under the assumption of stable,
memory-bound BEworkloads. Such frequency-based schemes, how-
ever, disadvantage LC workloads: their irregular access patterns
and requirement for sustained FMem residency preclude existing
systems from meeting SLOs. Hence, an advanced tiered memory

policy is urgently needed to preserve LC performance–particularly
in consolidated servers hosting concurrent workloads.

3 Design
3.1 Overview
Driven by the need to support LC and BE workloads concurrently
in multi-tenant environments, we introduce MTAT–an adaptive
tiered memory management framework that guarantees LC SLOs
while preserving overall system performance among co-located BE
workloads. The core principle of MTAT is the dynamic partitioning
and isolation of FMem, allocating a dedicated capacity to each work-
load to prevent interference and ensure predictable performance.
Figure 3 presents an overview of the MTAT framework.

MTAT consists of two primary components: the Partition Policy
Maker (PP-M), which determines per-workload FMem allocations,
and the Partition Policy Enforcer (PP-E), which implements these
allocations. PP-M adopts individualized strategies for LC and BE
workloads. For LC workloads–where memory demands fluctuate
over time–it leverages reinforcement learning to model dynamic ac-
cess patterns and adjust FMem allocations in real time. Conversely,
for BE workloads–characterized by sustained, repetitive memory
usage–PP-M relies on offline profiling to estimate marginal perfor-
mance gains and provision FMem accordingly. PP-E implements
the PP-M’s decisions via fine-grained FMem adjustments, priori-
tizing the LC partition plan, followed by progressive BE allocation
reconfiguration. Between policy-update intervals, PP-E continu-
ously promotes and demotes pages between FMem and SMem to
maintain the designated "hot" working set.

MTAT determines and enforces its memory partitioning pol-
icy through the following steps. First, PP-M leverages RL infer-
ences—derived from system memory conditions such as memory
traffic and migration overhead—to predict the minimal FMem allo-
cation required to meet the SLOs of LC workloads. It then reserves
this FMem capacity for LC workloads and distributes any remain-
ing FMem among BE workloads in a manner that ensures uniform
performance improvement across all BE workloads. Once the parti-
tion sizes for all workloads are finalized, PP-M conveys the FMem
partitioning policy to PP-E, which then reconfigures the FMem
partitions accordingly. Specifically, PP-E identifies the workloads
that require additional FMem and those that must release some
portion of their existing FMem allocation. Based on this classifi-
cation, PP-E carries out the memory tier exchange, where pages
belonging to workloads that need reduced FMem are migrated to
SMem, while pages from workloads demanding increased FMem
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Figure 3: Overview of MTAT.

are simultaneously migrated from SMem to FMem. After the ex-
change, PP-E continuously monitors the memory access patterns
of each workload until the next partitioning interval, promoting
frequently accessed pages from SMem to FMem while ensuring
that all migrations remain within the workload’s allocated FMem
and SMem to preserve isolation.

3.2 Partition Policy Maker
3.2.1 RL-based FMem Partitioning for LCWorkload. PP-M employs
an RL model that adaptively determines the amount of FMem to
allocate in real-time to accommodate the SLO of the LC workload
under unpredictable demand fluctuations. The LC partitioning pol-
icy in PP-M exhibits a clear causal relationship between FMem
allocation and SLO compliance outcomes, and it follows an itera-
tive decision-making structure that adapts to evolving loads over
time. Consequently, this setup aligns with the canonical four-stage
Markov Decision Process—state (MDP) observation, action selec-
tion, reward assignment, and policy update—rendering reinforce-
ment learning a suitable choice. The formulation below details how
the MDP is defined for LC Fmem partitioning in PP-M.

State. We select three primary metrics—FMem Usage Ratio,
FMem Access Ratio, and Memory Access Count—to characterize
the state of LC workload under FMem allocation, as they directly
influence SLO violations.
• FMem Usage Ratio. Defined as the fraction of an LC work-
load’s total memory usage residing in FMem, the FMem
Usage Ratio indicates whether sufficient FMem is available
to house frequently accessed data. This metric serves as a
critical determinant of potential response time violations
due to its strong correlation with SLO satisfaction.
• FMem Access Ratio. Measured as the percentage of total
memory accesses directed to FMem, the FMem Access Ratio
quantifies the efficiency of LC workload utilizing allocated
FMem. Analyzed alongside the FMem Usage Ratio, it pro-
vides complementary insights into the adequacy of FMem
allocation and its operational effectiveness.
• Memory Access Count. Representing the number of mem-
ory accesses performed by an LC workload per unit time, the

Memory Access Count assesses workload intensity. This met-
ric aids in detecting potential under- or over-provisioning
of FMem resources in response to varying load conditions.

Action. In each partitioning policy decision interval, PP-M may
increase or decrease the amount of FMem allocated to an LC work-
load. We formalize this decision as a single scalar action 𝛼 repre-
senting the net change in FMem (e.g., measured in gigabytes). A
positive 𝛼 indicates an expansion of the FMem region, whereas a
negative 𝛼 signifies a reduction.

Any action must be completed before the next interval begins.
Due to the bandwidth constraint of the tiered memory system,
only a limited amount of data can be reconfigured during a single
interval. Consequently, the magnitude of 𝛼 is upper-bounded by
𝑀
2𝑡 , reflecting the bidirectional nature of memory reconfiguration
with simultaneous promotion and demotion of data, yielding an
action space

𝛼 ∈
[
−𝑀
2𝑡
,
𝑀

2𝑡

]
. (1)

Here,𝑀 denotes the maximum data movement capacity (e.g., bytes
per second) of the tiered memory subsystem, and 𝑡 is the length
of the policy interval. The constraint ensures that all changes to
FMem allocation are completed within the available bandwidth
during a single partition policy decision interval, guaranteeing a
fully consistent allocation for subsequent decisions.

Reward. We define the reward 𝑟 at each decision interval as
follows:

𝑟 =

{
1 − 𝑓𝑚𝑒𝑚_𝑟𝑎𝑡𝑖𝑜, if 𝑝99 ≤ 𝑆𝐿𝑂,

−1, otherwise,
(2)

where 𝑓𝑚𝑒𝑚_𝑟𝑎𝑡𝑖𝑜 represents the fraction of total memory usage
that resides in FMem (i.e., FMem Usage Ratio), and 𝑝99 denotes the
99th-percentile response time. If 𝑝99 exceeds the specified SLO, the
reward becomes −1. This binary penalty enforces strict compliance
with latency requirements, ensuring that solutions resulting in SLO
violations incur a sharply negative outcome. Conversely, when
the SLO is satisfied, the reward is given by 1 − 𝑓𝑚𝑒𝑚_𝑟𝑎𝑡𝑖𝑜 . By
subtracting the proportion of FMem usage from unity, the agent
is encouraged to minimize FMem allocation while still meeting
the latency constraint. As a result, the reward design concurrently
targets two objectives: enforcing hard SLO adherence through a
large penalty on violations and incentivizing FMem efficiency by
reducing the reliance on FMemwhenever the SLO remains satisfied.

RL model. The RL model for PP-M, based on the defined state,
action, and reward representations, is implemented using the Soft
Actor-Critic (SAC) algorithm [20]. SAC adopts an actor-critic frame-
work, wherein the actor is the policy network responsible for se-
lecting actions, and the critic consists of Q-networks that estimate
the value of state-action pairs. Algorithm 1 outlines the pseudocode
of this approach.

The model initializes the Q-networks (𝑄1, 𝑄2), the policy net-
work 𝜋 , and the replay buffer D, then retrieves the current
state—comprising the FMem Usage Ratio, FMem Access Ratio, and
Memory Access Count. Next, the policy outputs a continuous action
𝛼 , indicating how much FMem to add or remove, which is clipped
to the permissible range

[
−𝑀2𝑡 ,

𝑀
2𝑡
]
. The environment applies this
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Algorithm 1: LC workload’s FMem partition determina-
tion based on Soft Actor-Critic algorithm.

1: Initialize:
• 𝑄1, 𝑄2: twin Q-networks (Critic)
• 𝜋 : policy network (Actor)
• D: replay buffer to store transitions
• E: environment providing
𝑠 = (UsageRatio, AccessRatio, AccessCount)

2: Define action range: 𝛼 ∈
[
−𝑀2𝑡 ,

𝑀
2𝑡
]

3: while not done do
4: 𝛼 ← 𝜋 (𝑠)
5: 𝛼clip ← clip(𝛼, 𝛼min, 𝛼max)
6: (𝑠next, 𝑝99, done) ← E .step(𝛼clip)
7: if 𝑝99 ≤ 𝑆𝐿𝑂 then
8: 𝑟 ← 1 − 𝑠 .UsageRatio
9: else
10: 𝑟 ← −1
11: end if
12: D .store(𝑠, 𝛼clip, 𝑟 , 𝑠next, done)
13: 𝑠 ← 𝑠next
14: if it is time to update then
15: Sample a mini-batch (𝑠, 𝛼, 𝑟, 𝑠′) from D
16: Optimize 𝑄1 and 𝑄2 by minimizing error between their

predictions and the target
17: Update 𝜋 to maximize the critic-estimated returns
18: end if
19: end while

action, checks whether the 99th-percentile latency remains below
the specified SLO, and returns a reward of 1 − 𝑓𝑚𝑒𝑚_𝑟𝑎𝑡𝑖𝑜 if com-
pliant or −1 otherwise. Upon accumulating a sufficient number of
action-reward pairs, empirically determined as 50 iterations, the
PP-M updates 𝑄1, 𝑄2 and 𝜋 using a mini-batch sampled from D.
Each transition (𝑠, 𝛼, 𝑟, 𝑠′) is placed into D, and the Q-networks
are trained to minimize the mean-squared error relative to a soft
Bellman target. The policy network 𝜋 is adjusted to maximize the
Q-value estimates, thereby balancing efficient FMem usage with
consistent SLO satisfaction.

3.2.2 FMem Partitioning for BE workloads. PP-M allocates the re-
maining FMem capacity among the BE workloads, excluding the
portion reserved for the LC workload. In order to evenly distribute
any performance losses resulting from the LC workload’s dynamic
FMem occupancy, PP-E employs a fairness-based approach when
allocating FMem to the BE workloads.

Fairness-driven BE partitioning. To ensure fairness in perfor-
mance across BE workloads, PP-M seeks to minimize performance
imbalance among individual workloads. In particular, it aims to
elevate the performance of the "worst-off" workload as close as
possible to that of the "best-off" workload, thereby equalizing the
performance degradation caused by using SMem instead of FMem.
Formally, let 𝑃𝑒𝑟 𝑓 𝑖

𝑓 𝑢𝑙𝑙
denote the per-second throughput of work-

load 𝑖 when it has exclusive access to 100% of the FMem. Under a
specific memory allocation, let 𝑃𝑒𝑟 𝑓 𝑖

𝑎𝑙𝑙𝑜𝑐
be the corresponding per-

second throughput of workload 𝑖 . The performance degradation

Algorithm 2: FMem partitioning for BE workloads via
Simulated Annealing-based search.

1: Initialize:
• 𝑀total: total FMem capacity
• 𝑀LC: reserved memory for LC workload
• 𝑇0: initial temperature
• 𝛾 : temperature decay factor (0 < 𝛾 < 1)
• 𝑃 (M): performance degradation metric function
• M← [𝑀1, . . . , 𝑀𝑛], where

𝑀𝑖 ←
𝑀total −𝑀LC

𝑛
, ∀𝑖 ∈ {1, . . . , 𝑛}.

• 𝑃∗ ← 𝑃 (M),M∗ ← M
• 𝑇 ← 𝑇0, iter ← 0

2: while iter < itermax and 𝑇 > threshold do
3: Randomly select distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑛}
4: Δ𝑚 ← {+1,−1} (in GB) at random
5: M′ ← M with𝑀′

𝑖
← 𝑀𝑖 + Δ𝑚,𝑀′

𝑗
← 𝑀𝑗 − Δ𝑚

6: Δ𝑃 ← 𝑃 (M′) − 𝑃 (M)
7: if Δ𝑃 > 0 or rand(0, 1) < exp

( Δ𝑃
𝑇

)
then

8: M← M′

9: end if
10: 𝑇 ← 𝛾 ·𝑇
11: iter ← iter + 1
12: if 𝑃 (M) > 𝑃 (M∗) then
13: M∗ ← M
14: end if
15: end while
16: Return M∗ and 𝑃 (M∗)

𝑁𝑃 for workload 𝑖 is then defined as:

𝑁𝑃[𝑖 ] =
𝑃𝑒𝑟 𝑓 𝑖

𝑎𝑙𝑙𝑜𝑐

𝑃𝑒𝑟 𝑓 𝑖
𝑓 𝑢𝑙𝑙

(3)

To achieve the highest level of fairness, PP-M must find a memory
allocation such that, for any twoworkloads 𝑖 and 𝑗 , the ratio 𝑁𝑃 [𝑖 ]

𝑁𝑃 [ 𝑗 ]
is

as close to 1 as possible. In practice, PP-M maximizes the minimum
ratio 𝑁𝑃[𝑖 ] across workload 𝑖 .

Simulated Annealing-Based Search. PP-M employs a Simulated
Annealing (SA) approach [15] (Algorithm 2) to determine an FMem
allocation that optimizes fairness among BE workloads. Initially,
PP-M reserves the necessary capacity for the LC workload and then
distributes the remaining FMem evenly across the BEworkloads. Let
𝑀 = [𝑀1, · · · , 𝑀𝑛] denote this initial allocation vector, and 𝑃 (𝑀)
represent the corresponding performance degradation metric. Dur-
ing each iteration, PP-M randomly selects twoworkloads 𝑖 and 𝑗 and
applies a memory shift of Δ𝑚, chosen randomly from {−1, +1} GB.
The allocation vector is updated accordingly:𝑀𝑖 ← 𝑀𝑖 + Δ𝑚 and
𝑀𝑗 ← 𝑀𝑗 − Δ𝑚, producing a new allocation 𝑀′. PP-M evaluates
this new allocation by computing Δ𝑃 = 𝑃 (𝑀′) − 𝑃 (𝑀). If Δ𝑃 > 0,
the new allocation is automatically accepted; otherwise, 𝑀′ is ac-
cepted with probability 𝑒𝑥𝑝

Δ𝑃
𝑇 to prevent premature convergence

to a local optimum, where 𝑇 is the current temperature. With each
iteration, 𝑇 is reduced by a factor 𝛾 , such that 𝑇 ← 𝛾𝑇 . The search
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Algorithm 3: Detailed partition adjustment procedure by
PP-E.

1: Initialize:
• 𝑀

(𝑡 )
LC , 𝑀

(𝑡+1)
LC : LC memory states at 𝑡 and 𝑡 + 1.

• 𝑀
(𝑡 )
𝑖

, 𝑀
(𝑡+1)
𝑖

: BE memory states for job 𝑖 at 𝑡 and 𝑡 + 1.
• 𝑝max: Maximum pages per time slice.
• ΔLC ← 𝑀

(𝑡+1)
LC −𝑀 (𝑡 )LC , Δ𝑖 ← 𝑀

(𝑡+1)
𝑖

−𝑀 (𝑡 )
𝑖

• PromoteSet← {𝑖 | Δ𝑖 > 0},DemoteSet← {𝑖 | Δ𝑖 < 0}
• 𝑃promote ←

∑
𝑖∈PromoteSet Δ𝑖 +max(0,ΔLC)

• 𝑃demote ←
∑
𝑖∈DemoteSet |Δ𝑖 | +max(0,−ΔLC)

• remainingPages← max(𝑃promote, 𝑃demote)
2: while remainingPages > 0 do
3: 𝑝 ← min(𝑝max, remainingPages)
4: Allocate LC movement:

𝑚LC ←


min(ΔLC, 𝑝), ΔLC > 0,
−min( |ΔLC |, 𝑝), ΔLC < 0,
0, ΔLC = 0.

5: Determine BE memory movement𝑚∗
𝑖
:

6: if 𝑚LC > 0 then
7: Distribute𝑚LC pages proportionally to |Δ𝑖 | across

DemoteSet.
8: else if 𝑚LC < 0 then
9: Distribute |𝑚LC | pages proportionally to Δ𝑖 across

PromoteSet.
10: else
11: Distribute 𝑝 pages each to PromoteSet and DemoteSet

proportionally to their respective demands.
12: end if
13: remainingPages← remainingPages − 𝑝
14: Update𝑚LC and𝑚∗

𝑖
accordingly.

15: end while
16: Return Page movement schedule {𝑚LC,𝑚

∗
𝑖
}.

terminates when the maximum number of iterations is reached or
when 𝑇 falls below a predefined threshold (determined experimen-
tally to maintain the periodic cycle). Lastly, upon completing the
search for the optimal allocation𝑀′ and its corresponding perfor-
mance value 𝑃 (𝑀′), PP-M establishes the partitioning policy for
the subsequent cycle based on the finalized allocation𝑀′ and the
predefined memory𝑀𝐿𝐶 designated for the LC workload.

3.3 Partitioning Policy Enforcer
3.3.1 LC-First Adjustment for Partitioning Policy. PP-E implements
the partitioning policy determined by PP-M by directly reconfig-
uring FMem allocations. Since FMem demand remains saturated
at full utilization across all workloads, any partition modification
entails migrating data between FMem and SMem, making overall
performance highly sensitive to the sequence of migrations. To
mitigate this sensitivity, PP-E subdivides the update interval spec-
ified by PP-M into finer time slices, enabling granular execution
of partition changes that preserve priority for LC workloads while
concurrently optimizing BE workload performance.

(a) Partitioning policy adjustment

(b) Refining FMem contents

Figure 4: PP-E partitioning policy adjustment and FMem
refinement based on page access histograms.

Algorithm 3 provides a detailed procedure for adjusting mem-
ory partitions. First, PP-E computes the discrepancies between the
current and desired memory allocations for both the LC workload
(Δ𝐿𝐶 ) and each BE workload (Δ𝑖 ). Based on these discrepancies,
each workload is classified into either the set requiring additional
memory as PromoteSet or the set capable of releasing some of its
allocated memory as DemoteSet. Subsequently, PP-E determines
the total number of pages to be migrated, denoted 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑎𝑔𝑒𝑠 .
This total is then divided into multiple time slices, each constrained
by the maximum number of pages that can be relocated in a single
slice, 𝑝𝑚𝑎𝑥 . For each time slice, PP-E calculates the number of pages
to be moved, 𝑝 , identifies which workloads require memory move-
ment, and specifies how this movement is carried out. When the LC
workload requires a memory adjustment (i.e.,𝑚𝐿𝐶 ≠ 0)—whether
through promotion or demotion—its page migrations take prece-
dence. Specifically, during each time slice, thememory promotion or
demotion demands induced by the LC workload are proportionally
allocated among the BE workloads in PromoteSet or DemoteSet
based on each BE workload’s respective promotion or demotion
demands, ensuring that the overhead of memory migration is fairly
distributed among the BE workloads. If no changes are required
for the LC workload, a similar procedure is applied solely among
the BE workloads, with page exchanges between PromoteSet and
DemoteSet proportionally allocated based on the demands of the
workloads within each set.

3.3.2 Hotness-Aware Page Placement. To maintain FMem in a high-
activity ("hot") state during partitioning adjustments, PP-E con-
tinuously collects per-page access frequencies through hardware
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counter sampling and leverages these metrics to guide page pro-
motions and demotions. Specifically, PP-E tracks access frequen-
cies separately for pages residing in FMem and SMem and then
performs page migration by employing a histogram-based scheme–
commonly used in state-of-the-art tiered memory systems [23, 39]–
where histogram bins increase exponentially, doubling at each step
(from 20 to 2𝑛), thereby categorizing pages according to their ob-
served access frequencies. Figure 4 illustrates the overall depic-
tion by which PP-E maintains per-workload access frequency his-
tograms and leverages them to identify promotion and demotion
pages. During the partitioning policy adjustments, as depicted in
Figure 4a, when a workload requires additional FMem capacity,
PP-E promotes pages from SMem to FMem by selecting those in the
highest frequency bin. Conversely, when FMem requires eviction,
pages are demoted from FMem to SMem following the lowest-
frequency bin. Because the set of frequently accessed pages can
shift over time, PP-E periodically ’ages’ the recorded access frequen-
cies by half at each partitioning-policy update interval determined
by PP-M.

Once the memory adjustments prompted by partitioning are
complete, as shown in Figure 4b, PP-E continues to refine FMem
contents based on these access frequencies until the following par-
titioning policy is determined. During this process, PP-E represents
all pages in a unified histogram based on their access frequencies
and allocates them to FMem up to the workload’s partition size,
leaving the remaining pages in SMem. Crucially, each workload’s
allocated FMem partition size is preserved, regardless of dispari-
ties in access frequencies across workloads. Page replacement is
performed strictly within the confines of each workload’s assigned
FMem partition, thus ensuring the isolation required for PP-E to
fulfill the performance objectives set by PP-M.

4 Implementation
We implement a prototype of the MTAT framework on a Linux
6.1.53 kernel, which comprises two primary components–a user-
space daemon for PP-M and a kernel-space daemon for PP-E–that
communicate through the cgroup interface [2] using file I/O opera-
tions. PP-E periodically aggregates per-workload memory statistics
and publishes them via its cgroup interface; PP-M reads these mea-
surements, updates the partitioning policy, and writes the revised
policy back for PP-E to enforce. The tunable parameters of PP-E and
PP-M (e.g., the number of data points PP-E collects per partition-
update window and the action-reward interval in PP-M) regulate
the reinforcement-learning adaptation rate, with faster adaptation
incurring higher CPU overhead. In our prototype, we confine RL
execution to BE cores, thereby ensuring that LC workloads see no
impact on latency and throughput. To empirically balance adap-
tation speed and CPU overhead, we set the parameters so that
partition updates occur once per minute in our environment.

PP-M is developed in Python [8], incorporating PyTorch for its RL
modeling. Whenever 50 new data points (comprising state–action-
reward tuples) are collected, PP-M performs an incremental training
step to update its RL model. PP-M employs offline profiling data for
BE workload partitioning, which measured their throughput under
varying FMem allocations, ranging from 0 GB to higher capacities
in 1 GB increments.

Table 1: LC benchmarks characteristics.

Benchmark RSS (GB) SLO (ms) Max Load (KRPS)

Redis 33.6 20 80
Memcached 31.4 20 1220
MongoDB 33.2 30 125
Silo 30.4 15 11

Table 2: BE benchmarks characteristics.

Benchmark RSS (GB) Description

SSSP 35.5 Finds the shortest paths from a single source
node.

BFS 35.2 Explores all nodes at the current depth level.
PR 36.0 Assigns importance scores to nodes in a

directed graph.
XSBench 31.7 Simulates the computational workload of

Monte Carlo neutron transport calculations.

PP-E leverages Intel’s Process Event-Based Sampling (PEBS) to
capture detailed page-level access patterns at a 1 ms action-reward
interval. Specifically, it samples MEM_LOAD_L3_MISS_RETIRED.
LOCAL_DRAM and MEM_LOAD_L3_MISS_RETIRED.REMOTE_DRAM
events to classify Read operations as FMem or SMem, respectively,
and MEM_INST_RETIRED.ALL_STORES event to record Write oper-
ations, partitioning them by address ranges into FMem or SMem
categories. PP-E accumulates these read-and-write counts in page-
level histograms, following a method similar to MEMTIS [23] and
FlexMem [39]: PP-E uses each page’s page frame number in its
Page Table Entry (PTE) to store access counts, then aggregates
them into FMem, SMem, and unified histograms. Each histogram
bin is linked to a list of physical pages that fall within that bin’s
access count range, making it straightforward to identify specific
pages and correlate them with their memory locations.

5 Evaluation
System Configuration. We set up an experimental environment

for the client-server using two physical machines. The client ma-
chine, which generates load, is equipped with an AMD Ryzen
Threadripper 3970X CPU operating at 3.70 GHz, featuring 32 cores
and 32 GB of DRAM. The server machine, which receives the load,
comprises two sockets of Intel Xeon Gold 6342 CPUs, each operat-
ing at 2.80 GHz and containing 24 cores per socket. The server’s
memory is distributed across two NUMA nodes: node 0 with 32 GB
of DRAM and node 1 with 256 GB of DRAM. To prevent the net-
work bandwidth from becoming a performance bottleneck, the
client and server machines are interconnected via a 200 Gbps link,
and each is equipped with a Mellanox ConnectX-6 network inter-
face card. Following prior work [23, 37], we emulate CXL memory
by utilizing NUMA-based remote memory. Specifically, only the
CPU connected to Node 0 is used for computation, while the DRAM
attached to Node 1 is designated solely as remote memory. Mea-
surements using the Intel Memory Latency Checker show that the
memory access latencies for Node 0 and Node 1 are approximately
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73 ns and 202 ns, respectively—consistent with typical access times
for local DRAM and CXL memory [25].

Benchmarks. We employ four representative LC workloads: Re-
dis [9] and Memcached [5] (in-memory key-value stores), Mon-
goDB [6] (a NoSQL database), and Silo [36] (an in-memory trans-
actional database). For client programs, Redis and MongoDB uses
YCSB [11] workload C (100% reads), Memcached uses Mutilate [7],
and Silo uses TailBench [22]. Redis runs in a single-threaded con-
figuration on a dataset comprising 13.5 million records (each 1 KB,
with 100 B per field and 10 fields). MongoDB runs with eight threads
on a dataset of 23.3 million records (also 1 KB each, with 100 B per
field and 10 fields). Memcached is configured to use eight threads
with 7.1 million items (each item having a 100 B key and a 4 KB
value). Silo runs in single-threaded mode, using the TPC-C dataset
scaled to 320 warehouses. The SLO for each LC workload is deter-
mined by the maximum KRPS at which the workload can reliably
handle the load without an exponential increase in latency, along
with the corresponding P99 latency. As for BE workloads, we se-
lect a set of applications commonly employed in tiered-memory
evaluations: the Single-Source Shortest Paths (SSSP), Breadth-First
Search (BFS), and PageRank (PR) benchmarks from the GAPBS [4],
along with the HPC workload XSBench [10]. Table 1 and 2 pro-
vide a detailed benchmark description for LC and BE workloads,
respectively.

Comparisons. We evaluate our proposedMTAT against two state-
of-the-art tiered-memory page management policies, MEMTIS and
TPP, as well as two static approaches, FMEM_ALL and SMEM_ALL.
• MEMTIS uses a page access histogram to identify frequently
accessed ’hot’ pages and migrates them to FMem.
• TPP employs an active/inactive list, similar to traditional
swapping systems, leveraging page faults to decide which
pages should reside in FMem or SMem.
• FMEM_ALL configures the LC workload to exclusively oc-
cupy and utilize FMem.
• SMEM_ALL forces the LC workload to use only SMem.

To comprehend how FMem allocation policies for LC and BE work-
loads affect MTAT ’s performance, we separately evaluate two vari-
ants of MTAT:
• MTAT (LC Only) exclusively allocates FMem only to the
LC workload, with the remaining memory shared among BE
workloads through competitive allocation.
• MTAT (Full) determines/allocates an appropriate amount
of FMem for all workloads.

Experimental Methodology. We allocate a total of 24 cores from
the server machine to specific workloads by pinning them to des-
ignated CPU cores. Eight cores are dedicated to the LC workload,
while the remaining 16 cores are evenly distributed among the
four BE workloads, assigning four cores to each BE application.
All page sampling and migration activities are executed on cores
designated for BE workloads to minimize interference with the
LC workload’s performance. Further, to mitigate potential cache
interference, we employ Cache Allocation Technology (CAT) [27]
to partition the LLC ways between LC and BE workloads. Of the 12
available LLC ways, four are allocated to the LC workload, while
each BE workload is assigned two ways.

5.1 Overall Performance
To assess how effectivelyMTAT manages FMem in a multi-tenant
environment where LC and BE workloads share the same server, we
measure both the time-varying FMem allocation per workload and
the corresponding performance under dynamic load conditions. In
each experiment, we co-locate each LCworkload with four different
BE workloads. The load applied to the LC workload follows the pat-
tern shown in Figure 7, rising until it reaches the maximum capacity
that FMEM_ALL can handle and then decreasing thereafter.

Figure 5 depicts the FMem allocation over time and the 99th-
percentile (P99) latency of the LC workload, with the red line in-
dicating the SLO. We define this SLO at the point where the LC
workload’s latency diverges. Although TPP and MEMTIS are capa-
ble of allocating FMem to the LCworkload, both still violate the SLO
for all LC workload types, similar to SMEM_ALL. Moreover, TPP ex-
periences even more severe latency degradation than SMEM_ALL.
This violation arises because LC workloads require their data to be
present in FMem at the time of request, whereas frequency-based
page management (used by TPP and MEMTIS) only promotes data
to FMem after each request completes, offering no timely benefit
once LC data has been displaced to SMEM by BE workloads. In
contrast,MTAT (LC Only) andMTAT (Full) both successfully satisfy
the SLO by adaptively allocating FMem in response to growing LC
workload demand. During low-load periods (before 60 seconds and
after 180 seconds), only a small portion of FMem is allocated to the
LC workload, allowing the BE workloads to utilize FMem similarly
to SMEM_ALL. During the high-load interval (100–140 seconds),
the LC workload occupies nearly the entire FMem capacity, akin to
FMEM_ALL, thereby handling the surge effectively.

Moving on to the BE workloads, Figure 6 presents their per-
formance with respect to fairness and throughput. We utilize the
fairness metric as the smallest performance degradation ratio (𝑁𝑃 )
derived from Equation 3 and the throughput metric as the sum of
the per-second throughput across all BE workloads. As illustrated
in the FMem allocation graph for MTAT (Full) in Figure 5, MTAT
(Full) substantially improves fairness by distributing FMem among
the BE workloads according to performance degradation ratios,
thereby ensuring equitable resource sharing while still prioritiz-
ing the LC workload. In particular,MTAT (Full) improves fairness
nearly threefold compared to TPP and 1.4× relative to MEMTIS.
Although prioritizing FMem for LC workloads results in a through-
put reduction of approximately 18% compared to MEMTIS, this
decrease is considered an acceptable trade-off given the substan-
tial improvement in fairness. Moreover,MTAT (LC Only)—which
adopts a frequency-based policy for BE workloads while retaining
LC priority—reduces this gap to approximately 7%.

5.2 Throughput of LC Workloads
To quantitatively evaluate how effectively MTAT guarantees the
performance of LC workloads when co-executed with BE work-
loads, we compare MTAT and comparisons against FMEM_ALL
by measuring the maximum load that can be sustained without
violating the LC workload’s SLO. The experimental setup follows
the same methodology as the overall performance evaluation: each
LC workload is co-located with four BE workloads, and the SLO
violation is checked to see whether it is breached during periods of
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(a) Redis
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(b) Memcached
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(c) MongoDB
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(d) Silo

Figure 5: Performance comparison of MTAT and baseline approaches under dynamic load. This figure presents the impact of
dynamic load on various LC workloads—(a) Redis, (b) Memcached, (c) MongoDB, and (d) Silo—when co-located with four BE
workloads. The top plot in each subfigure shows the P99 latency over time, with red lines indicating the SLO. The subsequent
plots illustrate the FMem ratio under MTAT (Full), MTAT (LC Only), MEMTIS and TPP.

high load. Figure 8 presents the results. On a geometric mean basis,
TPP delivers roughly 70% of FMEM_ALL’s throughput that lags
behind SMEM_ALL, which relies solely on SMem for the LC work-
load; similarly, MEMTIS reaches only about 85% of the throughput.

In contrast, MTAT achieves an overwhelming throughput by dy-
namically tracking the load and allocating a dedicated portion of
FMem that the LC workload can fully utilize, incurring less than a
1% loss relative to FMEM_ALL, regardless of LC workload types.
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Figure 6: (a) Fairness and (b) throughput metric comparison of BE workloads under MTAT (Full), MTAT (LC Only), MEMTIS and
TPP. Each metric is computed based on the performance of four BE workloads, which are co-located with one of the four LC
workloads.
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Figure 7: Dynamic load pattern applied to the LC workload.
The load starts at 20% of Max Load, increases to 100% in
increments of 20% every 20 seconds, and then decreases back
to 20% following the same pattern.

5.3 Performance of BE Workloads
To quantitatively evaluate the distribution of remaining FMem
among BE workloads after reserving FMem for the LC workload,
we compare the allocation ratios for each workload and the re-
sulting fairness and throughput with SLO violation rates while
progressively increasing the load intensity of LC to 20%, 50%, and
80% of its maximum throughput. In these experiments, Redis serves
as the LC workload under uniform load, while four BE workloads
are executed concurrently. Figure 9a and 9b respectively present
the fairness and throughput across different load levels, and Ta-
ble 4 reports the corresponding rates of SLO violations. Despite
allocating all available FMem to BE workloads, TPP exhibits the
lowest fairness and throughput along with the highest SLO vio-
lation rate due to continuous page-fault-induced migration and
severe FMem contention. MEMTIS, on the other hand, achieves the
highest throughput regardless of the load level since it does not
manage FMem for Redis. Therefore, as the load increases, the lack
of management results in a significant increase in SLO violations;
at 80% of the maximum load, 99% of requests miss their SLO target.
Conversely, MTAT (Full) consistently delivers the highest fairness
at all load levels without any SLO violations. Under heavy load
conditions,MTAT dynamically reallocates FMem to maintain the
SLO of Redis, while under minimal load conditions, it allocates only
the necessary FMem to satisfy Redis’s SLO and aggressively assigns
the remaining memory to BE workloads. By flexibly adapting to
the demands of both LC and BE workloads, MTAT significantly
improves overall system performance.

5.4 Effectiveness under Varying Settings
To assess whether MTAT performs reliably across diverse settings,
we vary the ratio of LC to BE cores and the number of BE workloads
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Figure 8: Maximum load of LC workloads under MTAT,
MEMTIS, TPP and SMEM_ALL, normalized to FMEM_ALL.

and, for each setting, measure the maximum throughput achievable
without SLO violations and evaluate BE fairness and throughput at
loads of 20%, 50%, and 80% of that setting’s maximum. We report
results for bothMTAT (Full) andMTAT (LC Only); the LC workload
is Memcached, and the BE workload set comprises SSSP and PR for
the setting with two BE workloads and SSSP, BFS, PR, and XSBench
for the setting with four BE workloads. We normalize maximum
throughput to FMEM_ALL, in which LC exclusively uses FMem,
and normalize BE fairness and throughput to MEMTIS. Table 3
summarizes these results.

Across all settings, MTAT satisfies the LC performance guar-
antee. Regardless of the core partitioning or the workload mix, it
attains maximum throughput between 98% and 99% of FMEM_ALL.
Even as LC performance is preserved, at low loads of 20% and
50%,MTAT sustains BE throughput approximately 80% to 90% of
MEMTIS. Moreover, for MTAT (LC Only), eliminating unnecessary
LC promotions to FMem can yield BE throughput that exceeds
MEMTIS. In the same regimes,MTAT (Full) improves BE fairness by
at least 10% over MEMTIS, andMTAT (LC Only) exhibits BE fairness
comparable to MEMTIS. At 80% load, since both MTAT variants
reserve most FMem for LC, BE throughput falls below 75% (about
53% in the most adverse setting); however, the overhead from this
reduction is equitably apportioned across BE applications, yielding
up to a 77% increase in fairness. In sum,MTAT consistently meets
its design objective of preserving LC performance and operates
effectively across a wide range of settings.

5.5 MTAT overhead
We evaluate the overhead incurred in maintaining theMTAT frame-
work by categorizing it into PP-M and PP-E. The measurements
are conducted as part of the overall performance evaluation (§5.1)
using Redis. The primary overhead for PP-M arises from CPU us-
age during the RL inference process to determine the partitioning
policy and the PEPS sampling procedure. Our measurements show
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Figure 9: (a) Fairness and (b) throughput metrics of four BE workloads co-located with Redis underMTAT (Full),MTAT (LC
Only), MEMTIS, TPP. Results are shown for three different load levels (Max Load 20%, 50%, and 80%). The colors within each bar
represent the FMem distribution across all co-located workloads.

Table 3: Summary of experimental results for MTAT (Full) and MTAT (LC Only) across varying settings (𝑥,𝑦, 𝑧). Each triple
specifies 𝑥 cores allocated to the LC workload and 𝑦 total cores shared among 𝑧 BE workloads. The LC max load is normalized
to FMEM_ALL, whereas BE fairness and BE throughput are normalized to MEMTIS.

Setting Config. LC max
load

Max Load 20% Max Load 50% Max Load 80%
BE fairness BE throughput BE fairness BE throughput BE fairness BE throughput

(4, 20, 2) MTAT (Full) 0.98 1.10 0.91 1.17 0.88 1.30 0.65
MTAT (LC Only) 0.99 1.06 1.00 1.06 0.98 1.26 0.66

(4, 20, 4) MTAT (Full) 0.99 1.16 0.93 1.19 0.87 1.19 0.57
MTAT (LC Only) 0.99 1.05 0.98 1.00 1.00 1.18 0.58

(10, 14, 2) MTAT (Full) 0.99 1.32 0.88 1.30 0.88 1.25 0.72
MTAT (LC Only) 0.99 1.02 0.99 1.01 0.99 1.22 0.73

(10, 14, 4) MTAT (Full) 0.99 1.18 0.94 1.33 0.84 1.52 0.54
MTAT (LC Only) 0.99 1.00 1.00 0.99 1.01 1.51 0.56

(16, 8, 2) MTAT (Full) 0.99 1.33 0.87 1.37 0.86 1.31 0.71
MTAT (LC Only) 0.99 1.04 0.99 1.02 0.99 1.31 0.73

(16, 8, 4) MTAT (Full) 0.98 1.23 0.92 1.44 0.83 1.76 0.52
MTAT (LC Only) 0.98 1.00 1.01 0.97 1.02 1.77 0.51

Table 4: SLO violation rates of MTAT (Full), MTAT (LC Only),
MEMTIS, and TPP at varying load levels.

Config.
SLO violation rate (%)

Max Load
20%

Max Load
50%

Max Load
80%

MTAT (Full) 0 0 0
MTAT (LC Only) 0 0 0
MEMTIS 0 11.6 99
TPP 0 30.7 100

that the combined CPU overhead remains below 7% of a single core,
which is actually negligible. The main overhead for PP-E derives
from memory bandwidth consumption during partitioning replace-
ment. On average, this process consumes about 4 GB/s of memory
bandwidth. Although our experimental server is equipped with a
single-channel DDR4-3200 memory module—offering a maximum
bandwidth of 25.6 GB/s—server-grade machines typically feature
6 to 8 memory channels, achieving an aggregate bandwidth of ap-
proximately 200 GB/s. Thus, the 4 GB/s consumption imposes only
a minimal impact on overall system performance.

6 Related Work
Page management in tiered memory system. Several studies have

attempted to improve the performance of tiered memory sys-
tems [19, 23, 25, 26, 29, 33, 34, 39, 40]. Telescope [26] extends the
region-based sampling technique, DAMON (Data Access Moni-
tor) [29], to utilize the access bits of multiple levels of page table
entries, thereby effectively capturing page hotness in terabyte-scale
memory environments. NOMAD [38] reduces page migration over-
head by placing data non-exclusively across memory tiers and
providing transactional page migration. FlexMem [39] combines
NUMA hint faults and PEBS to enable more accurate identifica-
tion of hot pages. TMTS [19] focuses on environments that employ
Optane DIMMs as SMem, demoting only data that has not been
accessed for several minutes to SMem. vTMM [34] defines a ’hot
set size’ for each VM as the number of pages exceeding a base ac-
cess threshold and allocates FMem to each VM in proportion to its
hot set size. ArtMem [42] treats the DRAM hit ratio as the system
state and employs reinforcement learning to jointly tune how many
pages to migrate and which pages qualify as hot. PET [18] performs
proactive demotion and selective promotion at allocation-unit gran-
ularity rather than page granularity. These studies share a common
principle of retaining highly accessed pages in FMem and propose
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strategies for efficient FMem utilization. However,MTAT demon-
strates that the access-frequency-based approach fails to handle
LC workloads exhibiting irregular memory access patterns and
addresses the issue by allocating FMem based on each workload’s
intrinsic characteristics.

Resource management in multi-tenant environments with co-
located LC/BE workloads. Extensive research has explored strategies
for allocating resources to ensure that LC workloads meet their
SLOswhile optimizing system performance inmulti-tenant environ-
ments [16, 17, 24, 28, 30]. Heracles [24] and PARTIES [17] employ
heuristic-based partitioning of shared resources (e.g., CPU cores,
LLC, DRAM bandwidth, and network bandwidth) by monitoring
the tail latency of LC workloads, thereby maintaining LC SLOs and
improving overall system throughput. Similarly, Twig [28] utilizes
a multi-agent Branching Dueling Q-network (BDQ) reinforcement
learning model to partition shared resources between co-located LC
and BE workloads, while CLITE [30] leverages Bayesian optimiza-
tion for resource partitioning, and OLPart [16] adopts a contextual
multi-armed bandit (CMAB) approach for online resource allocation.
However, these approaches do not account for tiered memory sys-
tems and, therefore, do not consider FMem as a contested resource.
In contrast,MTAT demonstrates that system performance can de-
grade due to contention over FMem and mitigates it by determining
the appropriate FMem allocation per workload, subsequently iso-
lating FMem accordingly.

7 Discussion
LC/BE co-location work with MTAT. Prior work on LC and

BE workload management has focused on dynamically adjusting
latency-sensitive resources–specifically CPU core, DRAM capacity,
and last-level cache–to accommodate fluctuations in LC demand.
These schemes operate orthogonally to MTAT’s FMem/SMem ratio
adjustments, and because MTAT’s RL model rewards solely on SLO
compliance, the resource fluctuations they introduce are inherently
absorbed into the learning process, thereby enabling complemen-
tary operation. However, integrating them in this manner would
necessitate a thorough analysis and empirical validation of how
the resources monitored by each scheme and their partitioning
between LC and BE workloads influence MTAT ’s ultimate per-
formance contribution. This undertaking lies beyond the scope of
this paper, where the primary focus is to establish the necessity of
differentiated FMem usage for LC and BE workloads. We therefore
defer the extension of existing LC/BE allocation techniques to a
tiered-memory context and their integration with MTAT to future
work.

Additional bandwidth-aware memory management policy with
MTAT. Bandwidth-aware memory-management policies extend
traditional frequency-based page-hotness classification and re-
placement schemes by dynamically adjusting FMem/SMem pri-
orities and hot-page placement according to real-time bandwidth
utilization–for instance, inverting access priority when FMem band-
width becomes saturated.MTAT also operates orthogonally to such
bandwidth-aware extensions, allowing its existing partitioning
logic to function in parallel without interference. Since that mecha-
nism fundamentally governs the intra-workload distribution of hot

pages, it can be incorporated directly intoMTAT’s PP-E FMem page
refinement. Moreover, MTAT’s strategy of allocating FMem first to
the LC workload ensures that any increase in LC demand automat-
ically enlarges its FMem partition and proportionally reduces BE
occupancy, thereby preventing LC performance degradation due
to bandwidth saturation. As a result, the dynamic accommodation
of LC workload leaves insufficient residual FMem for BE tenants
to saturate the bandwidth, eliminating the need for an extended
evaluation of this policy extension in this paper.

8 Conclusion
We proposeMTAT, an adaptive tiered memory system that lever-
ages per-workload FMem isolation to enable the consolidation of
LC and BE workloads on multi-tenant servers–while strictly pre-
serving the LC workload’s SLO and ensuring fair performance for
BE workloads. MTAT dynamically tracks the LC workload memory
access patterns, reserves FMem determined through RL inference
accordingly, and distributes the remainder among BE workloads
based on their FMem-to-SMem ratio in relation to throughput. Com-
pared to state-of-the-art tiered memory page-placement solutions,
MTAT improves the maximum throughput of LC workloads by up
to 1.7× and enhances BE workload fairness by up to 3.3× while
ensuring only a minor decrease in throughput.
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