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Abstract: In this paper, a three-dimensional (3D)-subspace-based azimuth angle, elevation angle,
and range estimation method with auto-pairing is proposed for frequency-modulated continuous
waveform (FMCW) radar with an L-shaped array. The proposed method is designed to exploit the
3D shift-invariant structure of the stacked Hankel snapshot matrix for auto-paired azimuth angle,
elevation angle, and range estimation. The effectiveness of the proposed method is verified through a
variety of experiments conducted in a chamber. For the realization of the proposed method, K-band
FMCW radar is implemented with an L-shaped antenna.

Keywords: L-shaped array; FMCW; 3D subspace

1. Introduction

Recently, many commercialized radar systems have become available for automotive, surveillance,
anti-drone, medical, and personal security applications, as in [1,2]. As the need for inexpensive
high-performance radar is increasing, frequency-modulated continuous waveform (FMCW) radar has
become popular due to its inherent ability to utilize a large bandwidth with a low sampling rate [3–5].
Moreover, a homodyne receiver structure for the RF (radio frequency) frequency of FMCW radar can
be easily implemented with a mixer. We call this transformation via a mixer de-chirping. A variety
of estimation algorithms for FMCW radar have been developed, such as range estimation [6,7],
range and Doppler estimation [8,9], and range and azimuth angle estimation [10,11]. Among the
literature [6–11], there are no 3D-subspace-based algorithms for the joint estimation of range, azimuth
angle, and elevation angle in FMCW radars. At the same time, there is no implementation for an FMCW
radar system with an L-shaped receiving antenna array. In particular, concerning the joint estimation of
azimuth and elevation angle, an L-shaped antenna structure has been proposed with two-dimensional
(2D) estimation algorithms [12,13] for paired estimation of the two angles in recent studies. Although
the effectiveness of the suggested algorithms [10–13] has been demonstrated through simulations,
they have not been verified by the implemented system and corresponding experiments. However,
the proposed 3D-subspace-based algorithm for joint estimation of range, elevation angle, and azimuth
angle is verified through experiments using the implemented FMCW radar system with an L-shaped
receiving array. A variety of experiments have been done to demonstrate the effectiveness of the
proposed algorithm with L-shaped receiving antennas.

In this paper, a 3D-subspace-based joint azimuth, elevation, and range estimation algorithm is
proposed with a 3D shift-invariant stacked Hankel matrix, which consists of one-dimensional (1D)
Hankel matrices in a specific way to make use of the phase relationship between the receiving channels
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in horizontally placed antennas and vertically placed antennas, respectively. In addition to the 3D
shift-invariant parameter estimation algorithm, a 24 GHz FMCW radar system has been implemented
with transmitting lens antenna and receiving L-shaped antenna elements. The effectiveness of the
proposed algorithm was verified through a variety of experiments with the implemented FMCW
radar system.

2. System Model

The transmitted FMCW chirp signal can be modeled from [3] by:

s(t) =

{
exp

(
j
(
ωct + µ

2 t2))
0

for 0 ≤ t < Tsym

elsewhere
(1)

where ωc denotes the carrier frequency, µ is the rate of change of the instantaneous frequency of a
chirp signal, and Tsym is the duration of chirp signals. Then, the bandwidth of the FMCW chirp signal
is defined by B = µTsym/2π. Consider M far-field, non-coherent, narrowband sources impinging on the
L-shaped array with 2K + 1 omnidirectional sensors as shown in Figure 1. The array on the x- and
z-axes consists of two uniform linear sub-arrays with element spacing d, each being composed of
K + 1 elements.

Figure 1. Basic L-shaped radar system scenario.

Let φm, Θm, and τm denote the elevation angle, azimuth angle, and the time delay of the m-th
target, respectively. Then, the received FMCW signals at each antenna element can be represented by

rp,q(t) =
M−1

∑
m=0

am exp(jpαm) exp(jqβm)s(t− τm) + wp,q(t) (2)

where am denote the complex amplitude for the m-th target, (p,q)∈{(K,0), ..., (1,0), (0,0), (0,1), ..., (0,K)},
M denotes the number of targets, and wp,q(t) is the additive white Gaussian noise (AWGN) signal.
As in Equation (2), it is assumed that the received signals are perturbed by only an AWGN source.
Thus, there is no consideration for the non-Gaussian noise sources as in [14,15]. However, in practice,
non-Gaussian noises occur frequently in realistic outdoor environments. Since the proposed algorithm
is developed from the assumption of AWGN noise, it is impossible for the proposed method to be
applied with the non-Gaussian model directly. However, it is possible to make use of a pre-whitening
technique as a preprocessing step for the proposed algorithm in the case of the non-Gaussian noise
model as in [16].
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The two electrical angles αm and βm in Equation (2) can be represented from [9] by

αm = − 2π
λs

d sin φm cos Θm

βm = − 2π
λs

d cos φm
(3)

where λs denotes the wavelength of the carrier signal, d: element spacing.
In FMCW radar, the received FMCW chirp signals can be easily transformed into a sinusoidal

waveform via a mixer and a low-pass filter in the RF circuit [1]. We call these sinusoids beat signals.
The beat signals, transformed from the received FMCW signals of (2), can be represented as in [1] by

yp,q(t) =

(
M−1

∑
m=0

am exp(jpαm) exp(jqβm) exp
(

j
(

µτmt− µ

2
τm

2 + ωcτm

)))
+ wp,q(t) + z(t) (4)

where wp,q(t) denotes the transformed AWGN signal, and z(t) denotes the local oscillator (LO) phase
noise of the mixer, which is independent from receiving channel indexes (p,q). After analog-to-digital
conversion, the discrete time model of (4) with sampling frequency fs = 1/Ts (Ts: the sampling
duration) satisfying the Nyquist criterion can be derived by yp,q[n] = yp,q(nTs) for n = 0, ..., N − 1 where
N = Tsym/Ts.

From [17], it was revealed that the LO phase noise is transferred to the output of the mixer.
As depicted in Figure 2a, the LO signals of the implemented FMCW RF module are divided and
transferred to the mixers of the five receiving channels. Thus, it can be said that the receiving five
channels have the same phase noise z(t). Since the proposed method is designed to make use of
phase difference between receiving channels for the estimation of elevation and azimuth angle, the LO
phase noise cannot make any kind of disturbance on the estimation of azimuth and elevation angle
due to the identical z(t) for all of the receiving channels. However, in respect of range estimation,
z(t) can lead to some negative effects. In the implemented RF system, Temperature Compensate
X’tal (crystal) Oscillator (TCXO), AST3TQ-50, which is used to generate the LO signal, shows the
phase noise performance of −95 dBc/Hz at 10 Hz offset. Considering this phase noise characteristic,
the perturbation of LO on range estimation is expected to be very small.

Figure 2. Cont.
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Figure 2. (a) Block diagram of the 24-GHz transceiver and IF; (b) Photograph of the 24-GHz transceiver
and IF. PLL = phase-locked loop; VCO = voltage-controlled oscillator; LNA = low-noise amplifier,
MCU = micro controller unit, SPI = serial peripheral interface, DA = driver amplifier, PA = driver
amplifier, VGA = variable gain amplifier, HPF = high pass filter, BPF = band pass filter, LPF = low
pass filter.

3. Proposed Algorithm

Since the proposed method has been developed for the joint estimation of elevation angle, azimuth
angle, and range for FMCW radar with an L-shaped array, we propose a stacked Hankel matrix to
exploit the 3D shift-invariant structure. Prior to explaining the 3D shift-invariant structure, the single
shift-invariant structure in the temporal domain for range estimation is addressed with a mathematical
factorization model. Then, the shift-invariant structure in the temporal domain is extended to the
3D shift-invariant structure for joint estimation of elevation, azimuth, and range in the spatial and
temporal domains.

3.1. Shift-Invariant Structure for Range

For convenience in expressing the single shift-invariant structure for elevation, azimuth, and range,
we assume that the received signals are not perturbed by AWGN. Noise perturbation is addressed
later in conjunction with singular value decomposition (SVD).

Using the beat signals of the p-th and q-th antennas, yp,q[n] for n = 0, ..., N − 1, the Hankel snapshot
matrix can be defined as

Yp,q =


yp,q[0] yp,q[1] · · · yp,q[Lr − 1]
yp,q[1] yp,q[2] · · · yp,q[Lr]

...
...

. . .
...

yp,q[Lc − 1] yp,q[Lc] · · · yp,q[N − 1]

 (5)

where Lr and Lc = N − Lr + 1 are the selection parameters, which satisfy the conditions Lr ≥M and
Lc ≥ M. Without considering the perturbation by AWGN, the Hankel snapshot matrix Yp,q can be
factorized as in [18] by

Yp,q = AHRp,qB (6)
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Where A =


1 1 · · · 1
κ0 κ1 · · · κM−1
...

...
. . .

...
κLc−1

0 κLc−1
1 · · · κLc−1

M−1

, B =


1 κ0 · · · κLr−1

0
1 κ1 · · · κLr−1

1
...

...
. . .

...
1 κM−1 · · · κLr−1

M−1

,

H =

 a0 exp
(

j
(
− µ

2 τ0
2 + ωcτ0

))
· · · 0

...
. . .

...
0 · · · aM−1 exp

(
j
(
− µ

2 τM−1
2 + ωcτM−1

))
,

and Rp,q =

 exp(jpα0) exp(jqβ0) · · · 0
...

. . .
...

0 · · · exp(jpαM−1) exp(jqβM−1)



(7)

In (7), κm is the delay-induced phase shift between the adjacent samples, such that

κm = exp (jµτmTs) (8)

In (6), the diagonal matrices H and Rp,q are composed of the phase terms of the beat signals of (4).
The Vandermonde structured matrices A and B are defined in terms of the phase shifts κ0, ..., κM− 1,
which are not changed by array indices p and q.

From Yp,q of (5), the two sub-matrices Yp,q,0 and Yp,q,1 can be defined by

Yp,q,0 =


yp,q[0] yp,q[1] · · · yp,q[Lr − 1]
yp,q[1] yp,q[2] · · · yp,q[Lr]

...
...

. . .
...

yp,q[Lc − 2] yp,q[Lc] · · · yp,q[N − 2]

 (9)

Yp,q,1 =


yp,q[1] yp,q[2] · · · yp,q[Lr]

yp,q[2] yp,q[3] · · · yp,q[Lr + 1]
...

...
. . .

...
yp,q[Lc − 1] yp,q[Lc] · · · yp,q[N − 1]

 (10)

Comparing Yp,q,0 with Yp,q,1, it can be easily seen that Yp,q,1 is the shifted version of Yp,q,0 in the
column direction. Based on the factorization model of (6), the sub-matrices Yp,q,0 and Yp,q,1 can also be
factorized, such that

Yp,q,0 = A0HRp,qB
Yp,q,1 = A0ΣHRp,qB

(11)

Where A0 =


1 1 · · · 1
κ0 κ1 · · · κM−1
...

...
. . .

...
κLc−2

0 κLc−2
1 · · · κLc−2

M−1

 and Σ =


κ0 0 · · · 0
0 κ1 · · · 0
...

...
. . .

...
0 0 · · · κM−1

 (12)

In (11), it is noteworthy that factorizations for Yp,q,0 and Yp,q,1 are the same except for the diagonal
matrix Σ of Yp,q,1. We call this a shift-invariant structure. This single shift-invariant relationship
between Yp,q,0 and Yp,q,1 in (11) is extended to a 3D shift-invariant structure for the joint estimation of
range with elevation angle and azimuth angle.
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3.2. Shift-Invariant Structure for Two Electrical Angles

The stacked Hankel snapshot matrix for the joint estimation of range and azimuth and elevation
angles can be defined by

Y =

 Y0,0

YX
YY

, where YX =


Y1,0

Y2,0
...

YK,0

 and YY =


Y0,1

Y0,2
...

Y0,K

 (13)

In (13), the matrix Y0,0 takes the role of reference for pairing afterwards. Prior to explaining the
3D shift-invariant structure in Y, the shift-invariant structure for two electronic angles αm and βm

is addressed.
Concerning αm, the two stacked matrices, which are sub-matrices of YX, can be defined as

YX_0 =


Y1,0

Y2,0
...

YK−1,0

 and YX_1 =


Y2,0

Y3,0
...

YK,0

 (14)

Then, based on the factorization of (6), YX_0 and YX_1 can be rewritten as

YX_0 =


AHR1,0B
AHR2,0B

...
AHRK−1,0B

 and YX_1 =


AHR2,0B
AHR3,0B

...
AHRK,0B

 (15)

Since the diagonal matrix Rp,q is composed of the two electronics angles αm and βm, it is not
convenient to carry out further factorization in (15). Thus, we define the two diagonal matrices
Θ and Φ, whose elements are only composed of αm or βm, respectively, such that

Θ =

 exp(jα0) · · · 0
...

. . .
...

0 · · · exp(jαM−1)

 (16)

Φ =

 exp(jβ0) · · · 0
...

. . .
...

0 · · · exp(jβM−1)

 (17)

Then, we can derive the following relationship: Rk,0 = Rk−1,0Θ. Using this, YX_0 and YX_1 of (15)
can be reformulated as

YX_0 =


AHR1,0B

AHR1,0ΘB
...

AHR1,0ΘK−2B



YX_1 =


AHR1,0ΘB
AHR1,0Θ2B

...
AHR1,0ΘK−1B


(18)
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Applying the generalized eigenvalue decomposition (EVD) relationship for YX_0 and YX_1 such
that (YX_1 − λYX_0)β = 0, where λ and β denote the eigenvalue and the corresponding eigenvector,
respectively, this EVD can be redefined using (18) by


AHR0,0ΘB
AHR0,0Θ2B

...
AHR0,0ΘKB

− λ


AHR0,0B

AHR0,0ΘB
...

AHR0,0ΘK−1B


β = 0⇔




AHR0,0[Θ− λIM]Q
AHR0,0Θ[Θ− λIM]Q

...
AHR0,0ΘK−1[Θ− λIM]Q


β = 0 (19)

In (19), it is straightforward that the rank of (YX_1 − λYX_0) will be M unless λ = αm for
m = 0, 1, ..., M − 1, since M sources are assumed in (2). However, when λ = αm for m = 0, ..., M − 1,
the rank of (YX_1 − λYX_0) will be M − 1 since one of the rows in [(Θ − λIM)] will be zero. This means
that we can obtain αm as a result of the generalized EVD of YX_1 and YX_0.

Similar to the derivation of the EVD relationship for αm in Equations (14)–(19), the EVD
relationship for βm can be derived as follows. Two matrices, which are also sub-matrices of YY,
can be defined as

YY_0 =


Y0,1

Y0,2
...

Y0,K−1



YY_1 =


Y0,2

Y0,3
...

Y0,K


(20)

Concerning βm, it satisfies R0,k = R0,k−1Φ. Then, YY_0 and YY_1 of (20) can be factorized and
reformulated by

YY_0 =


AHR0,1B

AHR0,0ΦB
...

AHR0,1ΘK−2B



YY_1 =


AHR0,1ΦB
AHR0,0Φ2B

...
AHR0,0ΦK−1B


(21)

Applying the generalized EVD relationship for YY_0 and YY_1 such that (YY_1 − λYY_0)β = 0, it is
also straightforward that the rank of (YY_1 − λYY_0) will be M unless λ = βm for m = 0,1, ..., M − 1.
When λ = βm for m = 0, ..., M − 1, the rank of (YY_1 − λYY_0) will be M − 1 since one of the rows in
((Φ − λIM)) will be zero.

Concerning the generalized EVD form about κm for the given stacked matrix Y, two sub-matrices
Y0 and Y1 can be defined to make use of the shift-invariant structure in (11) and (12) by

Y0 = J0Y
Y1 = J1Y

(22)

where the selection matrices.
J0 = I2K+1 ⊗ [ILc−1 0Lc−1×1]

J1 = I2K+1 ⊗ [0Lc−1×1 ILc−1]
(23)
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where Ik denotes the identity matrix of k by k, and 0m×n denotes the zero matrix of m by n. Then,
the generalized EVD relationship for Y0 and Y1 such that (Y1 − λY0)β = 0 can lead to λ = κm for
m = 0,1, ..., M − 1 based on (11).

3.3. Signal Subspace

In the preceding section, a noiseless environment in Y was assumed for the derivation of the EVD
relationships in association with κm, αm, and βm. Considering perturbation of AWGN on the received
signals, first, singular value decomposition (SVD) should be applied with Y to separate the signal
subspace from the noise subspace. In the presence of AWGN, the stacked matrix Y can be factorized
by SVD into signal and noise subspaces as in [19], such that

Y = UΣVT =
[

Us Un

][ Σs

Σn

][
Vs Vs

]T
= UsΣsVT

s︸ ︷︷ ︸
signal subspace

+ UnΣnVT
n︸ ︷︷ ︸

noise subspace

(24)

where U and V are the orthogonal matrix, Σ denotes the diagonal matrix with singular values in the
diagonal elements, Us, Σs, and Vs are associated with the signal subspace, and Un, Σn, and Vn are
associated with the noise subspace. Although Us and Un are modeled to be separated with each other
after SVD in (24), the signal subspace and the noise subspace cannot be separated with each other
through only SVD. Generally, all of the subspace-based estimation algorithms [12–16,18,19] essentially
involve the subspace classification step, in which the signal subspace and the noise subspace are
separated from each other. In this step, SVD or EVD is used for matrix decomposition and its singular-
or eigenvalues are used with the Akaike Information Criterion (AIC) or the Minimum Descriptive
Length (MDL) [20] for subspace separation. At this time, a high signal-to-noise ratio (SNR) is required
with the subspace-based algorithms, which use the signal subspace or the noise subspace for correct
subspace classification as in [18]. Thus, in a low SNR situation, performance degradation can be
incurred by incorrect subspace classification.

Let us define a steering matrix YS, which shows the shift-invariant structure in Y, such that

Ys =



AHR0,0

AHR1,0
...

AHRK,0

AHR0,1
...

AHR0,K


(25)

Then, it satisfies [21]
Ys = UsT (26)

where T denotes full rank M by M transformation matrix. From Us, the pairs of sub-matrices such that
{Us,0, Us,1}, {Us,X_0, Us,X_1}, and {Us,Y_0, Us,Y_1} can be defined such that

Us,0 = J0Us

Us,1 = J1Us
(27)

Us,X_0 = JX_0Us

Us,X_1 = JX_1Us
(28)

Us,Y_0 = JY_0Us

Us,Y_1 = JY_1Us
(29)



Sensors 2018, 18, 1113 9 of 20

In (28), JX_0 and JX_1 are selection matrices, which can extract the sub-matrices from Us

corresponding to YX_0 and YX_1, respectively, such that

JX_0 = [0K−1,1 IK−1 0K,K+1]⊗ ILc

JX_1 = [0K−1,2 IK−1 0K−1,K]⊗ ILc

(30)

In (29), JY_0 and JY_1 are selection matrices, which can extract the sub-matrices from Us

corresponding to YY_0 and YY_1, respectively, such that

JY_0 = [0K−1,K+1 IK−1 0K−1,1]⊗ ILc

JY_1 = [0K−1,K+2 IK−1]⊗ ILc

(31)

In the preceding section, noiseless samples are assumed and used to derive the EVD relationships,
(Y1 − λY0)β = 0, (YX_1 − λYX_0)β = 0, and (YY_1 − λYY_0)β = 0, for κm, αm, and βm, respectively.
However, noiseless samples cannot be made in a real RF system, so the sub-matrices from the signal
subspace can substitute for the noiseless sub-matrices in three kinds of EVD forms for κm, αm, and βm,
as follows:

(Y1 − λY0)β = 0⇒ (Us,1 − λUs,0)β = 0 (32)

(YX_1 − λYX_0)β = 0⇒ (Us,X_1 − λUs,X_0)β = 0 (33)

(YY_1 − λYY_0)β = 0⇒ (Us,Y_1 − λUs,Y_0)β = 0 (34)

3.4. Low-Complexity Pairing

The preceding section addressed how each of the three parameters αm, βm, and κm can be
estimated from Us in (32)–(34). However, how those estimates are paired to each other was not
addressed, which must be handled for joint range, azimuth, and elevation estimation. In the
literature [22–27], 2D parameter estimation algorithms have been proposed for angle and frequency
in [22,23], range and Doppler in [24,25], and azimuth and elevation in [26,27]. All of the algorithms
have their own mechanisms to pair the two kinds of estimated parameters for each target. In particular,
to reduce the operation cost of paired estimation, computationally efficient algorithms have been
proposed in [28,29]. However, all of the algorithms in [22–29] are limited to two-dimensional parameter
estimation. In particular, when the number of parameters to be matched increases from two to three,
the computational complexity greatly increases for 3D matching. In this paper, a low-complexity
matching method using 1D EVD is proposed.

The generalized EVD forms in Equations (32)–(34) can be rewritten in the EVD form with a
pseudo-inverse, such that

G = U†
s,0Us,1 = BΣB−1 (35)

GX = U†
s,X_0Us,X_1 = BXΘB−1

X (36)

GY = U†
s,Y_0 Us,Y_1 = BY ΦB−1

Y (37)

where G, GX, and GY are M-by-M full-rank matrices, the superscript † denotes the corresponding
Hermitian conjugate of a matrix, and B, BX, and BY involve the M eigenvectors corresponding to the
eigenvalues in Σ, Θ, and Φ, respectively. Considering no perturbation of AWGN on signal subspace Us,
B, BX, and BY are identical to each other, since the pairs of the sub-matrices {Us,0, Us,1}, {Us,X_0, Us,X_1},
and {Us,Y_0, Us,Y_1} are partitioned from only Us, and the elements of the diagonal matrices Σ, Θ, and
Φ, are modeled in ascending order.

Now, considering perturbation of AWGN on Us, we first performed EVD on GX of Equation (35),

ĜX = U †
s,0 Us,1 = B̂Θ̂B̂−1 (38)
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Using the obtained B̂, we performed diagonalization on G and GY:

Σ̂ = B̂−1GB̂ (39)

Φ̂ = B̂−1GY B̂ (40)

Through the derivation of (38)–(40), the values of estimated κ̂m, α̂m, and β̂m for the m-th target can
be found in the diagonal line of matrices Σ̂, Θ̂, and Φ̂ in ascending order, respectively. That is, for each
m, the estimated values {κ̂m, α̂m, β̂m} are matched well for the m-th target by low complexity. Based on
(3) and (8), the estimated elevation angle, azimuth angle, and the time delay of the m-th target can be
expressed as

φ̂m = −acos
angle

(
β̂m
)
λs

2πd
(41)

Θ̂m = −asin
angle(α̂m)λs

2πdcos
(
φ̂m
) (42)

τ̂m =
angle(κ̂m)

2πµTs
(43)

where asin ( angle(α̂m)λs
2πd cos(φ̂m)

) denotes the inverse sine function, acos (
angle(β̂m)λs

2πd ) denotes the inverse cosine

function, and angle (β̂m), angle (α̂m), angle (κ̂m)denotes the angle in radian, respectively.

3.5. Complexity Analysis

Since the proposed method is designed to estimate 3D parameters, such as range, azimuth,
and elevation, it is fair to compare the computational complexity of the proposed method with that
of the conventional 3D parameter estimation methods of an FMCW radar system. However, it was
difficult to find relevant research results about 3D parameter estimation algorithms for an FMCW
radar system, while 2D parameter estimation algorithms have been suggested for FMCW radar as
in [11,30]. Thus, in this article, the computational complexity of the proposed algorithm is analyzed
and compared with that of 2D multiple signal classification (MUSIC) of an FMCW radar system
in [11,30]. The costs for the required operations are summarized in Table 1.

Table 1. Costs of individual operations.

Operation Description Computational Complexity

SVD of Y O(K2Lc + KL2
c + L3

c )
EVD of G, GX, and GY O(M3)
U†

s,0 O(2M2(Lc – 1) + M3)
U†

s,X_0, U†
s,Y_0 O(2M2(K – 1) + M3)

Two-dimensional searching O(b2K2L2
c )

SVD: singular value decomposition. Y: the stacked matrix in equation (13). EVD: eigenvalue decomposition. M:
number of targets. K: number of antenna elements. Lc: number of row of matrix in Equation (5). b: iteration number
for two-dimensional searching. G, GX, GY, U†

s,0, U†
s,X_0, U†

s,Y_0: matrices defined in Equation (35)–(37).

For the given data matrix Y of (13), the computational complexity costs for 2D MUSIC of [11,30]
can be derived to be O(K2Lc + KL2

c + L3
c + b2K2L2

c ), where b is the iteration number for two-dimensional
searching. In general, the iteration number b is set to be much bigger than K, Lc, and M for a
high-resolution 2D pseudo-spectrum. Thus, using b >> K, Lc, M, the derived complexity cost for 2D
MUSIC can be simplified to O(b2K2L2

c ). For the proposed method, the computational complexity can
be derived to O(K2Lc + KL2

c + Lc
3 + M3 + 2M2(Lc – 1) + 2M2(K – 1)), which can be approximated using

Lc >> K to O(L3
c + M3 + M2Lc). Comparing O(L3

c + M3 + M2Lc) of the proposed method with O(b2K2L2
c )
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of 2D MUSIC, we conclude that the cost of the proposed algorithm for 3D parameter estimation is
much less than that of 2D MUSIC.

4. Implementation of 24-GHz L-Shaped Radar

To verify the effectiveness of the proposed method with L-shaped receiving antennas, a 24-GHz
FMCW radar system with L-shaped receiving antennas was implemented. The implemented system
consists of an antenna, an RF circuit, an IF circuit, a data-logging platform, and data-logging software.
The data-logging platform takes the role of gathering received IF samples and passing them to the
data-logging software in a personal computer (PC). The logged data is saved as files. Then, the
proposed method, realized in MATLAB (The MathWorks, Natick, MA, USA), is applied with the saved
data in the PC.

4.1. Transmitting and L-Shaped Receiving Antennas

The transmitting antenna is composed of two lens antennas, which have 14-dBi and 19-dBi
antenna gain. The 19-dBi high-gain antenna is selected as the default, and it is possible to change to the
low-gain antenna by using the data-logging platform. The L-shaped receiving antenna is composed of
five micro-strip patch antennas, designed to have about 6-dBi antenna gain, fabricated on an Ro4003
substrate with 0.012 inch thickness. The five receiving antennas have feeding lines with the same
electric length and a meander structure as shown in Figure 3.

Figure 3. Transmitting lens antenna and receiving L-shaped antenna. TX: transmission, RF: radio frequency.

Figure 3 shows the configuration of the transmitting and receiving antennas; the transmitting
antenna is located on the upper side of system, and the receiving antenna is on the lower side. The RF
front module is designed to be able to obtain the signals from the receiving antennas through a
rectangular waveguide interface.

The receiving patch antennas are set in an L-shaped formation for simultaneous elevation and
azimuth angle estimation. The two electrical angles αm and βm of Equation (3) can be estimated using
receiving antennas 1 to 3 and receiving antennas 3 to 5, respectively, as shown in Figure 1. Each patch
is located by 1 wave length distance vertically or horizontally, resulting in a field of view of ±30◦ in
azimuth and elevation.

The antenna operates over the frequency range of 24.025 to 24.225 GHz for the FMCW radar
signal bandwidth as shown in Figure 4a. Figure 4b shows the simulated receiving antenna radiation
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pattern; in this case, the antenna is designed to face forward. The return loss and radiation pattern in
Figure 4 are simulated together with the waveguide, transition, and meander feeding line. The antenna
characteristic is optimized for radar performance with adjacent antennas and discontinuity of structure,
although it is possible to improve the antenna characteristic.

Figure 4. (a) Receiving antenna return loss; (b) Simulated radiation pattern (normalized).

The transmitting antennas are designed by the lens to have a 12◦ beam width for the high-gain
antenna and a 36◦ beam width for the low-gain antenna, and the side-lobe levels of both antennas are
lower than 15 dB as shown in Figure 5.
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Figure 5. Measured transmission radiation pattern (normalized).

The pattern was measured from the effective isotropic radiated power and normalized by the
calculated transmit power by the RF system output power. The measured equivalent isotropically
radiated power (EIRP) values were 39.3 dBm for the high-gain antenna and 34.1 dBm for the
low-gain antenna.

4.2. 24-GHz Transceiver and IF

The 24-GHz FMCW RF system was implemented with a frequency synthesizer, a phase-locked
loop (PLL) circuit, a voltage-controlled oscillator (VCO), an edge-coupled filter for band-pass filtering,
a power amplifier (PA), and a low-noise amplifier (LNA). The overall structures of the RF and IF
systems are described in Figure 2a.

Since we assume a saw-tooth wave as in (1), a PLL chip was set to generate a saw-tooth wave
pattern with a 100-us period and a 200-MHz bandwidth over the range of 24.025 to 24.225 GHz with
10 dBm VCO output power. The reference clock of PLL is 20 MHz, which comes from TCXO. The VCO
output is filtered with an edge-coupled filter to improve the side-lobe characteristic. As shown in
Figure 2b, the edge-coupled filter is implemented with a center frequency of 24.125 GHz, a 10%
bandwidth, and a Chebyshev-type band pass filter. The parameters of the implemented RF system are
summarized in Table 2.

Table 2. Specifications of the developed 24-GHz transceiver and IF.

Specification Value

Center Frequency 24.125 GHz
Frequency Bandwidth (B) 200 MHz

Frequency Period (T) 100 µs
Transmitter Output Power 20 dBm

Receiver Channel 5 ch
Receiver Noise Figure 10 dB (max)

P1dB of LNA −15 dBm
Receiver Dynamic Range 60 dB

LNA: low noise amplifier.
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The filtered VCO signal is divided for transmission (TX) and LO as shown in Figure 2b. To increase
the power of the divided VCO signal, a PA with a 20-dBm output P1dB is used. Since a WR34 interface
is used with transmitting and receiving antennas, a fin-line structure transition is implemented to
transform between the micro-strip line and WR34. The front side of the fin-line transition is connected
to WR34, i.e., the signals on the micro-strip line are rotated 90◦ as shown in Figure 2b.

4.3. Data-Logging Platform

The radar-logging platform was implemented to transfer maximum 16 channel analog digital
converter (ADC) input signals to the PC in real-time. This platform mainly consists of digital signal
processor (DSP) and field programmable gate array (FPGA) chips, namely TI TMS320C6455 and Stratix
EP4SE530. The ADC output signals of a maximum of 16 channels are first saved in the first in first out
(FIFO) memory of the FPGA and then transferred to the double-data-rate two synchronous dynamic
random access memory (DDR2 SDRAM) through a direct memory access mechanism. The saved
data can be handled by the DSP chip or transferred to the PC through 1 G local area network (LAN)
communication as shown in Figure 6. In this work, the proposed algorithm is implemented in MATLAB
and applied with the data saved in the PC by the data-logging platform. The specifications of the
developed data-logging platform are summarized in Table 3.

Figure 6. Photograph of the developed data-logging platform. IO: input output, CPLD: complex
programmable logic device, ADC: analog to digital converter, DSP: digital signal processor, DDR2:
double data rate two, FPGA: field programmable gate array.

Table 3. Specifications of the developed data-logging platform.

Submodules Parts Specification

FPGA EP4SE530H35C4N

Logic element: 531,200

Total Internal Memory: 27,376 Kbit

Embedded Multipliers (18 × 18): 1024

DSP TMS320C6455-1GHz

Cycle Time: 1-ns Instruction Cycle Time

Internal Memory: 2096K-Byte

Memory Interface: 64-Bit, Sync, Async

DDR2 Controller: 32-Bit, 533 HMz BUS

DDR2 MT47H128M16RT 16 Meg × 16 × 8 Banks × 2EA

Flash AT29LV040A-15TC 4 Megabit

PHY LX971ALE 10/100 Mb/s Ethernet PHY
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Table 3. Cont.

Submodules Parts Specification

ADC ADS5271
12 Bit 8 CH ADC × 2EA, 40 MHz

LVDS Interface

RS232
MAX3221 RS-232 Line Driver/Receiver

FT232RL USB UART IC

CPLD 10M08SAE144C8GES
Logic element: 8000

LABs: 500

FPGA: field programmable gate array, DSP: digital signal processor, DDR2: double data rate two, PHY: physical
interface, ADC: analog to digital converter, RS232: Recommended standard 232, CPLD: complex programmable
logic device, 2EA: two each, LVDS: low voltage differential signaling, USB: universal serial bus, UART: universal
asynchronous receiver transmitter, IC: integrated circuit, LAB: logic array block.

5. Experiments

This section describes several indoor experiments, which were conducted to detect one target,
two targets, and four targets, respectively, in the microwave anechoic chamber of Daegu Gyeongbuk
Institute of Science & Technology (Daegu, Korea). One outdoor experiment was also carried out to
verify the performance of the proposed algorithm in a realistic scenario.

A radar module with an L-shaped antenna array was set up on one side of a pillar, and the
location of the radar module could be adjusted by a motor at the bottom of the pillar as shown in the
left part of Figure 7a. We configured the Cartesian coordinate system following the model in Figure 1
by arranging the pillar along the z-axis, the L-shaped array in the x-z plane, and the inflection point
of the L-shaped antenna array as the origin. Four square iron blocks with a 10-cm side length were
selected as targets, and every target was mounted on one railway. The scenarios of the experiments for
detecting one target, two targets, and four targets are shown in Figure 7, and the settled positions of
the targets for each experiment are shown as the form (x, y, z) in the following list:

• 1st experiment: one target, Target (−1.2 m, 5.9 m, −0.3 m)
• 2nd experiment: two targets, Target 1 (−1.2 m, 5.9 m, −0.3 m), Target 2 (−0.4 m, 5.9 m, −0.3 m)
• 3rd experiment: two targets, Target 1 (−1.2 m, 5.9 m, −0.3 m), Target 2 (0.4 m, 4.8 m, −0.3 m)
• 4th experiment: three targets, Target 1 (−1.2 m, 5.9 m, −0.3 m), Target 2 (−0.4 m, 5.9 m, −0.3 m),

Target 3 (0.4 m, 4.8 m, −0.3 m)
• 5th experiment: four targets, Target 1 (−1.2 m, 5.9 m, −0.3 m), Target 2 (−0.4 m, 5.9 m, −0.3 m),

Target 3 (0.4 m, 4.8 m, −0.3 m), Target 4 (1.2 m, 4.8 m, −0.3 m)

Figure 7. Experiment scenarios. (a) L-shaped radar module and scenario of one target; (b) Scenario of
two targets; (c) Scenario of four targets.
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We conducted 100 trials for each experiment, and the estimated positions are illustrated in Figure 8a–e,
respectively. Root mean square error (RMSE) was selected as the measurement of the experiment results,

and we defined the RMSE for each target as

√
1

100

100
∑

l=1
(x̂l − x)2 + (ŷl − y)2 + (ẑl − z)2, where (x̂l, ŷl, ẑl)

denotes the estimated position of the target (x, y, z) from the l-th trial. The measured RMSE values for
all experiments are shown in Table 4.

Table 4. Measured root mean square error (RMSE) values.

Experiments Target 1 Target 2 Target 3 Target 4

1st experiment 0.1775
2nd experiment 0.1726 0.1649
3rd experiment 0.1595 0.1705
4th experiment 0.1676 0.1876 0.1658
5th experiment 0.1692 0.1775 0.1673 0.1651

Figure 8. Cont.
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Figure 8. Detection results. (a) 1st experiment with one target; (b) 2nd experiment with two targets;
(c) 3rd experiment with two targets; (d) 4th experiment with three targets; (e) 5th experiment with
four targets.
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In our experiments, it was firstly found that all of the five receiving channels have their own
initial phases, which are different to each other due to implementation loss in the 24-GHz RF circuit.
Therefore, without the estimation and compensation for the initial phases, the estimation results of the
azimuth and elevation angles were biased a lot, resulting in a lot of RMSE. Thus, we tried to estimate
the initial phases for each channel and use them for a calibration factor before azimuth and elevation
estimation. After that, the estimation results shows less spread and less RMSE.

In the preceding section, the effect of low SNR is addressed in conjunction with subspace
classification. Unlike the high SNR environment of the targets within 6 m in a chamber, the targets at a
maximum of 30 m in outdoor environments are under a low SNR situation and can show performance
degradation due to a low SNR and the effect of clutter.

As shown in Figure 9a, the radar module was set up on a holder, and the inflection point of
the L-shaped antenna array was arranged as the origin at a height of 1 m from the ground. We then
arranged three targets: (1) Iron target in (−0.8 m, 10 m, 0 m); (2) Human target in (1 m, 30 m, 0 m);
(3) Human target in (1.5 m, 13 m, 0 m). We tried to arrange the center of the targets at around 1 m
height from the ground, and hence we put ‘0 m’ here for the three targets. It can be noted that the
ground is besprinkled with little stones with various shapes, which contribute much interference for
the estimations.

Figure 9. Detection results. (a) Outdoor experiment scenario; (b) detection results.
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We conducted 100 trials for the outdoor experiment, and the estimated positions are illustrated in
Figure 9b. The corresponding estimation results for each target are encompassed by the corresponding
ellipse. For the first and third targets, biases in estimation results occurred due to the effect of
non-Gaussian noise in the real environment. For the estimation results of the second target at a range
of 30 m, the miss detection rate really increased a lot due to a low SNR. Except for the estimation
results from the three targets, many undesired results were obtained from the clutter, mainly from the
stones on the ground in this experiment. In the realistic scenarios, the performance of the proposed
algorithms degraded due to the non-Gaussian noises and the low SNR.

6. Conclusions

This paper has proposed an auto-matched range-angle-Doppler 3D estimation algorithm based
on a 3D shift-invariant structure and presented an FMCW radar system with L-shaped receiving
antennas. Our experimental results in a chamber demonstrated that the implemented L-shaped
FMCW radar system with the proposed algorithm achieved high-quality joint estimation of range,
azimuth angle, and elevation angle. However, the results of the outdoor experiments demonstrated
that the performance of the proposed algorithm degraded under non-Gaussian noises and the low
SNR situation. Moreover, since the proposed method is composed of a variety of matrix operations
such as SVD and EVD, it was difficult to implement the algorithm on FPGA and DSP for real-time
estimation. Instead, the proposed algorithm is realized in MATLAB and applied with the receiving
data of the experiments.
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