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ABSTRACT

Unmanned Aerial Vehicles (UAV) has recently been receiving much attention because of a wide
range of potentional applications such as environmental monitoring, disaster monitoring, reconnais-
sance and even deliveries for online shopping. For these applications, position and attitude control is
an important task. However, the challenge of position and attitude control lies in that position of
quadrotor is coupled with roll, pitch and yaw motions in non-linear manner. Motion planning is also
important. Because reference trajectories inconsistent with feasible motion of the quadrotor make
controller design difficult and result in poor tracking performance. The objective of this thesis is to
design controller for quadrotor position and attitude motion tracking control. First, the quadrotor dy-
namics are modeled using reference frames, rotation matrix, force, moments, kinematics and dynam-
ics by Euler-Newton Equation. Then, differential flatness-based motion planning is presented for ref-
erence trajectory generation. Finally, PID type controller and Computed Torque Method controller

are designed for position and attitude control. Results are validated using MATLAB simulations.

Keywords : Flatness, Motion Planning, Trajectory Tracking Control, Quadrotor, UAV
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAV) has recently been receiving much attention be-
cause of a wide range of potentional applications such as environmental monitoring,

disaster monitoring, reconnaissance and even deliveries for only shopping. UAV also

is used for patrols and military operations in Korea. It is described by Figure 1.1.

R S e e T e

Figure 1.1: Patrol drone(left), military operation(right) in Korea

For these applications, controlling the position and attitude is an important task. The
challenge of position and attitude control lies in that position of quadrotor is coupled
with roll, pitch and yaw motions in non-linear manner. Motion planning is also needed.
Because reference trajectories inconsistent with feasible motion of the quadrotor make
controller design difficult and result in poor tracking performance. Quadrotors usually
have a small capacity of the battery so flight time of quadrotors is usually 20 ~ 30
minutes. Therefore, there is a need for more appropriate motion trajectory generation.

Because reference trajectories inconsistent with feasible motion trajectories of the
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quadrotor reduce the life of motors. So motion trajectory generation methods are more
important. To solve this problem, many researchers propose a variety of quadrotor
controller and motion planning. After then, we introduce quadrotor control and motion

planning method briefly.

1.1 Previous Work

There have been many papers on quadrotor control systems and motion planning.
When we search the previous work for our research, we focus on quadrotor control
and UAV motion planning. First, we introduce a variety of quadrotor controls.

Bouabdallah et al. proposed the usage of PID and LQ control techniques [1] to be
applied on the quadrotor which was able to stabilize the quadrotor attitude of its hov-
ering. After then, Bouabdallah and Siegwart proposed the use of back-stepping and
sliding-mode nonlinear control methods [2] to control the quadrotor which gave good
performance in the presence of disturbances. ChangSu et al. proposed a passivity-
based adaptive back-stepping control for quadrotor with teleoperation system [3]. And
Taeyoung proposed 2 types of attitude tracking controller which are smooth control
and hybrid control scheme for a rigid body [4] and first method can guarantee almost
semi-global exponential stability and second method verify global exponential stabil-
ity. Tse-Huai et al. also proposed attitude tracking control using angular velocity ob-
server when angular velocity measurements cannot be available [5].

In case of the differential flatness-based motion planning, Murray firstly proposed
this method for aircraft [6]. Since then, many papers used its method [7-8]. Mellinger
et al. proposed Mixed-Integer Quadratic Program (MIQP) motion planning for UAV
[9]. Turpin et al. proposed Concurrent Assignment and Planning (CAPT) for multiple
UAVs [10]. Another motion planning methods are RRT. Richter et al. recently pro-
posed collision free motion planning using RRT for UAV [11].

This thesis also proposes the quadrotor position and attitude controller and flatness-

based motion planning as previous work.



1.2 Motivation

The Motivation of this thesis is to design controller for quadrotor position and attitude
motion tracking controller for our research scenarios which are attack scenarios using
quadrotor. For attack scenarios, quadrotor motion planning is essential and we have

quadrotor platforms — Hummingbird and AR.Drone 2.0.

Figure 1.2: Asctec Hummingbird(left), Parrot AR.Drone(right)

Because quadrotor platforms are expensive and friable so simulation validations are
important and necessary before experiment validations. This thesis focuses on the
quadrotor simulator. For this simulator, first, the detailed quadrotor dynamics are
modeled using reference frames, rotation matrix, force, moments, kinematics and dy-
namics by Euler-Newton Equation. Then, differential flatness-based motion planning
is presented for reference trajectory generation. Finally, PID type controller and Com-
puted Torque Method controller are designed for position and attitude control. Results

are validated using MATLAB simulations.

1.3 Thesis Structure

This thesis structure of this thesis is as follows. Chapter 2 presents the quadrotor math-

ematical modeling based on the Newton-Euler method including the reference frames,



rotation matrix, force, moments, kinematics and dynamics. Chapter 3 shows the flat-
ness definition and the reference trajectory generation using differential flatness-based
motion planning. Chapter 4 presents the structure of total quadrotor control. Chapter
5 shows the simulation results using Matlab Simulink. At last, Chapter 6 shows con-

clusion and future work for this thesis.



Chapter 2

Background

In this paper, we design quadrotor position and attitude tracking controller. Especially,
attitude controller is designed using Computed Torque Method (CTM). To help read-

ers understand attitude controller, this chapter is prepared.
2.1 Computed Torque Method

Computed Torque Method [12] is the application of robot manipulator control. This
method usually used the rotational motion control of robot manipulator. In this sub-
section, Computed Torque Method is simply introduced.

The rigid body dynamics of robot manipulator have the form.
T=M(0)0+V(0,0) + G(6) (2.1)

where @ € R™ is the joint variables vector, M(@) € R™ ™ is the inertia term matrix
of the robot manipulator, V(@,6) € R™ is the vector of centrifugal and coriolis terms

and G(©) € R™ is the vector of gravity terms.

M(0), V(0,0), G(®) consistof @ or & and is so complicated. To control robot

manipulator, choose the control input.
T=at' +f (2.2)

where T € R™ is the vector of joint torques, @ = M(@) and B =V(6,0) + G(0)



We introduce new input 7’ and it is given by

' =04 + K,E + KpE (2.3)

where desired joint variables @4, joint variable error E = 0,; — 0, K, is the con-

troller gain about E and K, is the controller gain about E.

Using equation (2.2) and (2.3), the closed loop dynamics is characterized by error

equation.
E+K,E+KpE =0 (2.4)
According to the linear system theory, convergence of the tracking error to zero is

guaranteed [12]. Figure 2.1 is illustrated by the overall structure of robot manipulator

control.

Figure 2.1: The structure of the robot manipulator control by CTM.

To help readers understand Computed Torque Method, mass spring damper system

and 2-DOF robot manipulator examples are prepared.
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Figure 2.2: Mass spring damper system example.

First of all, we show an example of the linear system for understanding. Figure 2.2
shows mass spring damper system. Variable m is the mass. Variable b isthe damp-
ing coefficient. Variable k is the spring constant. VVariable x is position of the mass
and Variable f is force which is control input of mass spring damper system. To
describe mass spring damper system, we consider state space representation. It is

given by
[l =L ol bl [y ) @9
y=[1 o0 [,2]
where x, is position of the mass, x, is velocity of the mass.
To control mass spring damper system, we choose the control input f as follows:
f=af +B (2.6)
where a« =m, = bx + kx.

We can choose new control input f' as follows:



f’ S 5(.,'7- + kDex + kpex (27)

where e, is position error and é, is velocity error.

Figure 2.3 is the closed-loop control system of mass spring damper system using Com-

puted Torque Method.

Mass
spring
damper
\ system

X X

Figure 2.3: The structure of mass spring damper system control by CTM.
We validated mass spring damper system example using MATLAB simulation. Posi-
tion reference is x,, = 1m. The result shows a stable dynamics. Result is illustrated

in Figure 2.4.

result - position

Reference
actual position

1 15 2 25 3 35 4 45 5
time(sec)

Figure 2.4: Result of mass spring damper system example.
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X

Figure 2.5: 2-DOF robot dynamics example.

Lastly, we show the nonlinear system employing Computed Torque Method. Figure

2.5 shows 2-DOF robot manipulator. Variable M; and M, are the point mass of

each link. Variable L; and L, are the length of each link. Variable 6, and 6, are

the angle of each link. Variable g is the gravitational acceleration. To describe 2-

DOF robot dynamics, we consider Euler-Lagrange method. Positions of each links are

given by

xl = Ll SlIl 81
vy, = Licos6,
xZ S Ll Sln 81 + Lz Sln(91 +92)

Yy, = Ly cos8; + L, cos(6; + 6,).

So, kinetic energy of robot manipulator can be described as

K = Myi? + 2 Myy? + - Myl + 2 Myy2.

We simplified equation (2.6). It is given by

K == (My + M)I367 + - M, 13(67 + 63)

+ M,136,0, + MyL1L; (6,6, + 67) cos 6,.

-9-
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And potential energy of robot manipulator can be described as
P= M,gL;cos6; + M,g(L,cosB; + L, cos(6; +6,)). (2.11)

Lagrange equation is L = K — P and by Euler-Lagrange method, robot dynamics is

given by

=2 (j—g) - z—g 2.12)

Equation (2.9) can change equation (2.1) forms. Therefore, final 2-DOF robot manip-

ulator dynamics is given by
[rl] _ oy + M,)L% + M,L3 + 2M,L L, cosf, M,L3 + M,L,L, cos6,][6;
72 M,12 + M,L,L, cos 6, M,12 0,

N [—MleLz (26,6, + 62) sin 92] (2.13)

M,L,L,6% sin6,

+ [—(Ml + M,)gL, sin6; — M,gL, sin(6; + 92)]
—M,gL,sin(8; + 65) '

To control robot manipulator, we choose the control input t as follows:

T=at' +f (2.14)

where a =

(My + My)L? + MyL5 + 2MyLy Ly cos @, M,L3 + MLy L, cos 6,
MyL3 + MyLyL, cos 6, M,L2 '

. . .2
ﬁ _ —M2L1L2(29192 + 92) sin 92 n [_(Ml + Mz)ng sin 91 - Mszz Sin(91 + 92)]
MZLleéi sin 92 _MZgLZ Sin(91 + 92)

And we also choose new control input 7’ as follows:

-10 -



T’ = éT + kDég + kpeg (215)
where e, is angle error and é, is angle velocity error.

Using equation (2.14) and (2.15), the closed loop dynamics is characterized by error

equation.
ég + kDég + kpeg = 0 (216)
And then we validated robot manipulator control example using MATLAB simulation.

Each angle references are 6, ; = 0.8rad and 6, , = 0.4rad. The results show a stable

dynamics. Results are illustrated in Figure 2.6.

08 angle result - 61 ” result - error of 61
o ol
— Reference
07 — 04
~0§ 04
g —
R Eu
L) o
o 04 £ 03
c [«}]
@3 0.2
02 0.1
01 0
%% 4 6 8 10 12 1 15 18 2 Y24 6 & 10 12 14 % 18 2

time(sec) time(sec)

Figure 2.6: Results of 2-DOF robot dynamics example(6;)
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angle result - 62 result - error of 62

045 08
—— emor
0 07
— Rderence
028 —_— 0.
- 01 04
u 3
oz £ o4
o o .4
o 04 ik
C [}
© 015 02
01 01
004 0
1 I 1 1 L L L L 1 ] _D_ 1 1 i 1 Il 1 1 1 1 1
%7 4 5 & 10 2 1 % #® 2 2 4 6 8 10 12 14 16 1 20
time(sec) time(sec)

Figure 2.8: Results of 2-DOF robot dynamics example(6,)
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Chapter 3

Quadrotor Model

The first step is to create an accurate and detailed mathematical model of the quadrotor
in control design. In this chapter, we derive quadrotor dynamics using reference frame,
rotation matrix, force and moments, kinematics and dynamics by Euler-Newton Equa-

tion.
3.1 Model Assumptions

In this subsection, assumptions made to obtain a simple but useful model are explained.

(1) The quadrotor is rigid body.
(2) The structure of quadrotor is symmetric.

(3) Aerodynamic drag forces are neglected.

Assumption 1 and 2 are simplified inertia matrix / which is diagonal form and
constant matrix. Assumption 3 is useful because aerodynamics drag forces are very

small so these forces are neglected in indoor environment.
3.2 Reference Frames

For the quadrotor, there are several coordinate systems [13]. This section is defined
following coordinate frames — the inertial frame, the vehicle frame, the vehicle-1
frame, the vehicle-2 frame, and the body frame. Especially, the inertial frame and the

body frame are important because those can represent the rotation of the quadrotor.

-13-



3.2.1 The Inertial Frame

The inertial frame is the orthonomal basis fixed in space {e;, e, e5}. It means that the
inertial frame does not change when the robot moves and it is absolute frame in the

space. Figure 3.1 is illustrated.

ey -

Figure 3.1: The inertial frame.
3.2.2 The Vehicle Frame
The origin of the vehicle frame FV is at the center of mass of the quadrotor. However,
the axes of FV are aligned with the axis of the inertial frame F*. The x-axis of the

vehicle frame points e, the y-axis of the vehicle frame points e,, the z-axis of the

vehicle frame points es.

€3

ey

Figure 3.2: The vehicle frame of quadrotor.

3.2.3 The Vehicle-1 Frame

-14 -



The vehicle-1 frame F! represents the rotation of the yaw angle (y) {e;, e5, e}
The vehicle-1 frame is the yaw rotation coordinate frame which is positively rotated
about e; by yaw angle . The transformation from FV to F! is defined as

cosy siny O
] (3.1)

R,(¥) = [—sim,b cosyy 0
0 0 1

r
€3, €3

-9 €2

ey

Figure 3.3: The vehicle-1 frame of quadrotor.
3.2.4 The Vehicle-2 Frame

The vehicle-2 frame F? represents the rotation of the pitch angle (8) {E;, E;, E3}.
The vehicle-2 frame is the pitch rotation coordinate frame which is positively rotated

about e; by pitch angle 6. The transformation from F'! to F¥? is defined as

cos@ 0 —sinf
(3.2)

Ry(e) =[ 0 1 0
sin@ 0 cosf

Ej

r ¥
J €2, EZ

Figure 3.4: The vehicle-2 frame of quadrotor.
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3.2.5 The Body Frame

The body frame F? represents rotation of the roll angle (¢) {E;, E,, Es}. The body
frame is the roll rotation coordinate frame which is positively rotated about E; by

roll angle ¢. The transformation from F”? to F? is defined as

1 0 0
] (3.3)

Rx(¢):[0 cos¢p  sing
0 —sing cos¢

E;_-r El.

Figure 3.5: The body frame of quadrotor.

3.3 Rotation Matrix

The vector in the body frame does not apply the vector in the inertial frame. So the
relationship between the body frame and the inertial frame is needed. It called rotation
matrix. The rotation matrix R € SO(3) which is defined as SO(3) &
{A € R¥3|ATA = I5,det(A) = 1}. We define rotation matrix from the body frame to

the inertial frame using ZY X Euler angles as

cosfcosy singsinfcosy — cosgsiny cosgsinfcosy + singsiny
R = |cosfsiny singsinfsiny + cosgcosy cosgsindsiny — singcosy (3.4)
—sinf sin¢gcosf cosgcosd

3.4 Quadrotor Kinematics & Dynamics
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Kinematics is a viewpoint which studies the motion of a body without consideration
of the forces and torques acting on it. Kinematics usually don’t use 1-DOF motion
which is examples of dynamic models so it is important over 3-DOF motion descrip-
tion.

The dynamic systems can be gotten using two famous methods which are Newton-
Euler method and Euler-Lagrange method. Both methods result in equivalent set of
equations. For simple dynamics, Euler-Lagrange method is the useful choice because
it is easy. However, the dynamics complexity increases, it is difficult to apply Euler-
Lagrange method so it is reason that the Newton-Euler method has its advantages. We
consider Newton-Euler method to get the quadrotor dynamics.

In this section, the quadrotor kinematics and dynamics which will be useful to get

the equations of motion for the quadrotor are presented.
3.4.1 Kinematic Model
The translational motion of kinematics can be defined x = [¥*1 X2 x3]T is posi-

tion vector of the quadrotor in the inertial frame and v =[v1 vz v3]T is linear

velocity vector of the quadrotor in the inertial frame. It is given by

xl = vl
)'Cz = vz (35)
x3 = v3

Next, the rotational motion equation of kinematics can be defined using the rela-
tionship between angular velocity in the body frame Q =[p ¢ r]7, Euler angle
vector n=[¢ 6 Y]T and Euler angle derivative component vector 7 =

[¢ 6 )7 anditis given by
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P1 [ 0 0 1 0 —sinf 1[¢
lql = 10|+ Re(®) |0| + Rx(p)R,(6) [0] = [ cos¢ singcosf|[g]|. (3.6)
r 0 0 Y 0 —sing cos¢cosfl 4

The final equation form of the rotational motion is given by

<]5 = p + gsin¢tané + rcos¢ptand

6 = gcos¢ — rsing (3.7)
. sing cos¢
v=q cos6O r cos6

3.4.2 Dynamic Model

The dynamics of the quadrotor can be defined representing the rotational motion and
the translational motion, and the translational motion equation of the quadrotor ob-

tained from the second law of Newton. It is given by

v; = (cos¢gsinfcosy + sind)sim/))%
v, = (cos¢sinfsiny — sind)cosz/))% (3.8)

V3 =—g+ (cosgbcose)%

where m € R is quadrotor’s mass, g € R is gravitational acceleration, f € R is
total force in the quadrotor, v,, v, and v5 are linear acceleration in the inertial

frame.

The rotational motion equation of the quadrotor obtained from the second law of

Newton. It is given by
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=" pr + ., (3.9)
. ]x _]y T3
r= +

L. 1Ty

where J,, J, and J, are diagonal components of the inertia matrix J, 7,,7, and

T4 are torques on the quadrotor expressed in the body frame.

3.4.3 Force and Moments

In this subsection, we describe the relationship between total forces and torques with
the angular speed squared of each motors w?.

The force and torque of each motors can be expressed as

F. = kpw? (3.10)

T, = kyw?

where kg, k), are motor force constant and motor moment constant, w? are angular

speed squared of each motors.

The forces and torques on the quadrotor can be written in matrix form as

F1 [ke ke ke ke Irwﬂl

Tl _ O lkF 0 _lkF (l)lz

| | kg 0 —lkg 0 lezj I (3.11)
13 —ky ky  —km  ky la)EJ

where [ is length from rotors to the center of the quadrotor.

3.4.4 State Space Representation
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The state space representation model of the quadrotor is essential to verify that quad-
rotor dynamics is flat system. So in this subsection, first, we define quadrotor’s state
vector X(t) which defines the position and linear velocity in the inertial frame, Euler

angle and angular velocity in the body frame. It is given by

X®)=1[x1 x, x3 v, v, v ¢ 8 Y p q r]” (3.11)

And control input vector U(t) is defined as

Ut) =t U Uz Ww]"=[f 11 1, 73" (3.12)

The complete mathematical model of the quadrotor can be written in a state space

representation using equation (3.5), (3.7), (3.8), (3.9), (3.11) and (3.12). It is given by
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V1
(%)
5(1_ U3
X2 (cosgsinfBcosy + singsiny) %
X
3 (cos¢gsinfsiny — singcosy) =t
171 m
12 —g + (cos¢cosh) %
V3| _| p+ gsingtand + rcos¢tand (3.13)
¢ qcos¢ — rsing
4} sing cos¢p
i cosf cos6O
ll.) Jy=Jz Up
p 5w Tt
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Chapter 4

Differential Flatness-Based Motion Planning

In Chapter 1, we explain the importance of quadrotor motion planning. And one of
motion planning methods is differential flatness-based motion planning which makes
smooth trajectories. In this chapter, first, we verify that quadrotor dynamics are flat

system. And then, we focus on how to generate motion trajectories.
4.1 Differential Flatness

In this section, we show that the quadrotor dynamics with the four inputs is differen-
tially flat. If system is a flat, we can consider the smooth motion trajectory generation.

First, we define flatness [14].

Definition 1. A dynamic system X = f(X,U), X € R™, U € R™, is flat if and only

if there exist variables 3 y(t) € R™

X(©) = ¢o(y(®), 3,y (®))
U = 91 (y(©, 500, yO®) (4.1)

d
=0 (Y@.50, =, yP®) = o (Y@, 70,y O D), 01 (y(©, 5@, yO©))

In this thesis, our choice of the flat outputs for the quadrotor are given by

Vi =X
Y2 = X3 (4.2)
V3 = X3
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Ya=1Y

After then, we prove the quadrotor is flat system using our choice of the flat outputs.
To prove a flat system, the parameterization of other state using flat outputs must be

needed. By substituting the flat outputs to the state X(t), they are given by

Vg =Y
V) =Y
V3 = Y3
—1 Y1sinys—j, cosy, (4.3

¢ = sin
[72453+(53+958)"

-1 Y105y, + Y, siny,
2 +98

p = ¢ — Psinb
q = Ocos¢ + Psinpcosh

0 =ta

r = —Bsing + Ycos¢cos

The parameterization of ¢, @ in function of the flat outputs are needed to verify that

p, q, r become parameterization of the flat outputs.

(¥15inY4+¥1Y4C05y4—¥2COSY, +3725/4C053/4)(J37f +y3+(53 +9-8)2)
1 e

—(¥15iny4—Y2€05Y4)(0.5-———) 2Y1 V1 +2V2 V2 +2Y3V3+19.6)7)
[92+93+(3+9.8)2
(92492 +(93+9.8)2)*cos¢

§ = (4.4)

- (1€08ys — J1Y45iny, + Ypsiny, + y,y,c05y,) (V3 + 9.8) — (J1cosy, + J,siny,)ys
(3 + 9.8)%cos?6

Through the above equation (4.4), (4.5) and (4.6), the state X(t) can change our
choice of the flat outputs x;, x,, x3 and .
Then, we verify that the quadrotor’s control inputs U(t) change the flat outputs.

the parameterization of control inputs U(t) are given by
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_ m(g+Jys3)
1 cos¢cosf

U = Jxp + qr(_]y + /) (4.5)
Uz :]yq +or(Jx —J2)
Uy = J,7 +pq(—Jx +]y)

where p, ¢ and 7 are angular acceleration with respect to the body frame.

To convert p, g, 7 to the flat outputs of our choice, we need to verify that the pa-

rameterization of ¢, 6 in function of the flat outputs. They are given by

i

('y"lsiny4+y1y'4cosy4—yzcosy4+yzy'4cosy4)< /ﬁ%+ﬁ%+w3+9.8)2> \

. | (57493 +@3+9.8)2)
—(F15inys—J2€08Y,4)| 0.5—————= |(2¥1J1+2§2V2+2¥373+19.6¥1)
V3 +953+(3+9.8)2
—((571SiHY4+3}1J74COS}’4—372COSJ/4+3725’4COSJ/4)< 5}%"'3722"'(373‘*'9-8)2)

1 (e

. . . wes  ae oos . . . !
—(J15inY4—F205Y4) (0.5——————==) (2131 +252 32 + 27373 +19.651)) (JF +¥5 + (3 +9.8)2)
(ﬁ V3 +75+(73+9.8)2

+ ¢2tang (4.6)

(§2+52+(53+9.8)2) rcos¢p

((93(F1cosy, — J1yasiny, + Ypsiny, + J,74c08ys) + (3 + 9.8)(§1c0sys — J1Yasiny, + V,siny, + j,y,c05y,)")
—((1c08y, + J25inYs) Vs + 5 (rcosy, + J,5inys)))

(3 + 9.8)*cos?6

+ —2¥3(J3 +9.8)(J1c05Ys — J1V45inY, + ¥,siny, + §,74c05y,) (5 + 9.8) — (J1cosy, + F,5iny,)¥s)
(3 + 9.8)*cos?6

+26%tand

As a result, the quadrotor dynamics can be written in the function of flat outputs x;,

Xy, X3 and .

4.2 Flat Output Trajectory Generation

Several methods can be used to design the smooth flat output trajectory generation in

the flat system. In this paper, the Bezier polynomial function [14] is considered. This
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method is advantaged because of the main reason which is the coefficients of the pol-
ynomial can be easily calculated in function of the initial and the final conditions. A

general Bezier polynomial function is given by
Y= apt" + a1tV 1+ o+ ayt? +agt +ag (4.7)

where t is time and a;(i = 0,---,n) are constant coefficients to be calculated in

function of the initial and final conditions.

The degree of Bezier polynomial function for flat output trajectory generation is 9th
order polynomial function because 10 conditions are used. Those are 5 initial flat out-
put conditions and 5 final flat output conditions to calculate the trajectory planning.

Flat output trajectories are given by
yi = aot? + agt® + a;t” + -+ ast + ayt? + a;tt + a, (i = 1,2,3,4) (4.8)

If you want to generate trajectory y,(0) =0, y;(0) =0, ,(0) =0, ¥,(0) =0,

yP0)=0 and y,(4) =1, y,(4) =0, 5,(4) =0, 5,(4) =0, yP(4) = 0. Itis
given by

y,(6) = 70(t/4)° — 315(¢/4)8 + 540(t/4)7 — 420(t/4)® + 126(t/4)° (4.9)

y1 trajectory

g

reference trajectory
o o o — =

o
N

0

0 05 1 15 2 25 3 35 4 45 5
time(sec)

Figure 4.1: An example of flat output trajectory.
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To prove feasible motion of quadrotor, we show the motion planning of quadrotor

state X(t) and control input U(t) using the example - Equation (4.9). Flat outputs

are same as Equation (4.9). It is illustrated at Figure 4.2.

W trajectory

X trajectory
1. : . —_— . 1.
—_— i
1.2 —_— 2 1.2
%3
1 - 1
E ¥ T
= / o
- 04 / 0 04
§ / c
/ @
0.4 S 0.4
rd
/
0.2 / 0.2
o
0 =l L L L L L I I [}
0 05 1 15 2 25 3 35 4 45 5 0

time(sec)

25 3 35 4
time(sec)

95 1 15 2

45 3

Figure 4.2: Flat output trajectories.

At this moment, other states also are flat. They are illustrated at Figure 4.3 and Figure

4.4,

0.7

v trajectory

0.6

velocity(m/s)

—_—vi
_Vz—

1 15 2 25 3
time(sec)

39 4 A3 5

Figure 4.3: V trajectories (state).
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@ and 8 trajectory

angle(rad)

15 2 25 3 35 4
time(sec)

4|.5 5

angular velocity(rad/s)

Omega trajectory

o 05

1

15 2 25 3 35 4
time(sec)

Figure 4.4: ¢, 6 and 2 trajectories (state).

Control inputs are illustrated at Figure 4.5.

Force trajectory

force(N)
@ o &
T T = T R = - 1< B |

&>

15 2 25 3 35 4
time(sec)

4|.5 5

torque(Nm)

X 10

a5

5

Torque trajectory

05

L
1

15 2 25 3 35 4
time(sec)

Figure 4.5: Force and torque trajectories (control input).
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Chapter 5

Controller Design

In Chapter 3 and 4, we introduce dynamic model and flatness-based motion planning.
In this chapter, we focus on control design formulation. In Section 5.1, we describe
PID type position controller. In Section 5.2, we present flat output conversion for ref-

erence Euler angles. Finally, we describe force generator and attitude controller using

Computed Torque Method in Section 5.3 and 5.4 respectively.

For the quadrotor control, the overall structure of the quadrotor control [8] is illus-

trated in Figure 5.1.

Position

controller conversion

Flat output

Force

generator

Tr

Attitude
controller

n,Q

Quad
rotor

Figure 5.1: The overall structure of the quadrotor control.

5.1 Position Controller

The PID type controller applied to a variety of applications. The PID type controller
has the advantages which are that parameter gains can adjust easily and it is very sim-
ple to design. We design the position controller using PID type controller.

We make the new control input " which replaces the reference accelerations vec-

tor v, because only the reference accelerations vector v, doesn’t overcome system
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error. So we consider PID feedback of the position and linear velocity error. It is given

by

u’ - kppex + kDDéx + k” f ex (54)

where e, is position error, é, is velocity error.

Figure 5.2: The structure of the position controller for the quadrotor.

5.2 Flat Output Conversion

In this section, we introduce the flat output conversion. The reference accelerations
vector v, and the reference yaw angle vector i), are used to make reference Euler
angles and its derivative components n,, 7n,, .. This process can lead to the trans-

lational dynamics of the quadrotor. They are as follows

v, 1 = (cos¢psinfcosy, + singsiny,.) -
Uy » = (cos¢sinfsiny, — singbcosd)r)% (5.5)

, f
Uy 3 = —g + cos¢cosh m
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The reference roll angle vector ¢, and the reference pitch angle vector 6, can be
redefined using the translational dynamics of the quadrotor which substitute v, ref-
erence accelerations vector and the yaw angle reference vector i,.. They are given by

equation (5.6)

Uy 1 Sin =0y 5 cOSYPy ) (56)

¢, = sin"I(
J

Uy 124+ 0y o2+ (U 3+9.8)2

Uy 1 COSYy + Uy 5 SINY,

6r = tan”%( U 2 +98
L+ 0.

And we make the Euler angle reference vector n,- using equation (5.6) and yaw angle

reference vector i,. It is given by
Nr = [d’r 6 ] (5.7)
5.3 Force Generator

Total force of the quadrotor expressed by the body frame can be redefined by transla-
tional z-axis dynamics of the quadrotor using the control input u; which replaces z-
axis acceleration vector v, 3. Force generator takes only the new control input us.
Because x and y-axis acceleration vectors v, ;, v, , Is sufficiently considered to
generate reference Euler angles which make desired torque so we don’t consider the
new control input u;, uj. And cos¢ and cos@ terms are to linearize quadrotor al-

titude dynamics. Equation (5.8) represents force generator.

f=mEte (5.8)

cos¢gcosb

5.4 Attitude Controller by Computed Torque Method
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In Chapter 2, we explain Computed Torque Method. This method is usually use robot
manipulator controller. However, quadrotor have roll, pitch and yaw non-linear man-
ner. And quadrotor is also rigid body. It is same as robot manipulator characteristics.
So its method is suitable to the quadrotor attitude control. Its method considered the
non-linear inner loop compensator and the outer feedback loop. The non-linear inner
loop compensator is the key role to approximate linear model using the non-linear
term feedback and calculate the torque. In this section, we explain quadrotor attitude
controller using Computed Torque Method.

The rotational dynamics of the quadrotor can change the Euler angle representation.

It is given by equation (5.9).

T=JC % +J(C V) + C7 x (JC~1n) (5.9)

1 0 —sinf
where "1 =|[0 cos¢p singcosf| and
0 —sing cos¢pcosH

' 0 0 . —6Bcosh
(€C1H) =10 —¢sing ¢pcos¢pcosd — Osingsinf
0 —¢cosp —epsingcosd — Hcospsing

To control quadrotor attitude, choose the control input t:

T=at' +f (5.10)

where @ = JC™1, B =J(C™V)n+ C 1 x JC~1n).

And we introduce new control input 7':

T’ = ﬁT‘ + kDéT] + kpen (511)

where e, is Euler angle error and ¢, is Euler angle velocity error.
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Then, closed loop rotational dynamics of the quadrotor is characterized by second

order error dynamics.

én + kDén + kpen =0 (512)

Convergence of the tracking error to zero is guaranteed [12] using equation (5.12).

Figure 5.3 is described by the attitude controller via Computed Torque Method.

. -1 1N T
i Jc b >
+
}(C‘1}1}+

Cyx (Jcn) |
F'y f

i O ﬂ

T

N
N “*C/*

Figure 5.3: The structure of the attitude controller for the quadrotor.
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Chapter 6

Simulations

In this chapter, we develop the quadrotor simulator the using previous chapters. In
Section 6.1, we explain simulation parameter using simulator. Then we verify tracking
performance and quadrotor system stability according to differential flatness-based

motion planning. Finally, we introduce 3D visualization using Simulink 3D animation.

6.1 Simulation Parameters

Because quadrotor platforms are expensive and friable so simulation validations are
important before experiment validations. And real model parameters are necessary.
For the validation in the quadrotor simulation, The Ascending Technology Humming-

bird [15] is considered. Its specification [8] is illustrated in Table 1.

Parameter mark Value Unit
m 0.6 Kg
g 9.8 m/s?
Ji diag(3.9 x 1073,4.4 x 1073,4.9 x 1073) m?kg
kr 6.11 x 1078 N o
e 15 x 107 N
l 0.17 m

Table 1. Parameter specification of the simulation (Hummingbird).
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6.2 Simulation Results

Quadrotor can be used in disaster areas, surveillance and so on. For this reason, quad-
rotor is considered to have hovering capability and trajectory tracking.

To show hovering capability, we firstly verify quadrotor stability of one point tra-
jectory tracking control according to differential flatness-based motion planning. And
then, we verify trajectory tracking control performance using circle trajectory control.
We consider MATLAB simulation.

position result - x position result - z
1.4 1.3
1.2 1
1 0.4
E E
= o4 = 08
0 o
5 04 T 04
0.4 0.4
0.3 [—— Reference | 0 = e
| —— actual position For Gt ROGNoN
%95 1 15 ¢ 25 § 35 4 a5 5 0% 05 1T 15 & 25 § 35 4 45 5
time(sec) time(sec)
position result - y angle result - yaw
1.4 1.4
1.4 1.4
1 1
E =)
= 04 B o4
s >
= 04 D 04
2 ©
0.4 0.4
0.3 — Refarence 0.3 — Reference
actual position — aciual anghs
%93 1 5 2 25 3 35 4 45 5 %05 1 15 2 25 3 35 4 45 5
time(sec) time(sec)

Figure 6.1: Results of one point tracking using motion planning(flat outputs).

Figure 6.1 is result of flat outputs of one point tracking using motion planning.
Each flat output references are y, 1 = ¥, , = ¥ 3 arelmand y, , islrad. Compare
reference and real value, one point trajectory references considering motion planning

show stable quadrotor dynamics.
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angle result - roll angle result - pitch

0.0 0.0
) 0.04
0.04
-00
— — 0.0d
T T
8 o 8
D S
0 -0.04 o 0
[ |
® @ g0
0.0
0.0
-0,04 — Reference e = Reference
= aclual angle § ——— actual angle
_O'D!U ST S R (R (R po_eui oy 0 pa e oo oapdhiaa” g Ny
05 1 15 2 25 3 35 4 45 § 05 1 15 2 25 3 35 4 45 &
time(sec) time(sec)

Figure 6.2: Results of one point tracking using motion planning(attitude).
Figure 6.2 is result of angles of one point tracking using motion planning. Compare
reference and real value, attitude trajectory references considering motion planning

also show stable quadrotor dynamics.

Circle trajectory

0.5
reference
o actual position
-0.%
~
E 4
>
-1.%
2
_2. 1 1 1 1 1 ]
-1.5 -1 -0.5 0 0.5 1 15

x(m)

Figure 6.3: Result of circle trajectory tracking.
Figure 6.3 is result of flat outputs of circle trajectory tracking control. Each flat output

reference radius is 1m. Circle trajectory references considering motion planning also

show stable quadrotor dynamics.
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6.3 3D Visualization

To validate the stability of the quadrotor, it is very important tool to visualize dynamic
system behavior. This validation is possible thanks to blocks which called Simulink
3D Animation [16]. Furthermore, the 3D visualization allows to analyze the position
and attitude of the quadrotor. The 3D quadrotor models are represented for the real
trajectory results. Figure 6.3 shows 3D quadrotor model using Virtual Reality Model-
ing Language (VRML) which is proposed script language for 3D virtual environment
in internet interface. Actually, there are 3D model development tools such as Solid-
works, CAD, Catia and so on. We consider VRML for this thesis simulation.

An explicative video is linked here: https://youtu.be/By57LXeyO5M and

https://www.youtube.com/watch?v=dA5BxAGpabc.

Figure 6.3: 3D quadrotor model using VRML
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Chapter 7

Conclusion and Future Work

In this thesis, the basics of quadrotor control are presented including reference
frames, rotation matrix, kinematics and dynamics by Euler-Newton Equation. Then,
differential flatness-based motion planning is considered for reference trajectory
generation. Finally, position and attitude control of quadrotor dynamics are consid-
ered. PID type controller and Computed Torque Method are designed for position
and attitude controls. The performance of the controller is validated using
MATLAB simulations. The results show a stable dynamics despite the changes in
roll, pitch and yaw motion in nonlinear manner.

The actual experimental validations are required because modeling error is pre-
sented in a variety of reasons. But this thesis considers only simulation validations
so experimental validation of the actual quadrotor should be essential.

And disturbance is considered because of error of measurement and system en-
vironment variables. Disturbance acts on the control system in the form of addi-
tional input which is applied to the control input. The influence of disturbance must
be analyzed because the influence of disturbance generates a system error so affect

the stability of system.
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Appendix

A. Simulator Co

de

For thesis validation, Results are validated using MATLAB simulations. MATLAB

support MATLAB function block for simulations. In this appendix, we introduce 4

MATLAB function block: Flat output conversion, Attitude controller, Force generator

and quadrotor dynamics.

g

Attitude
" controller

==

e

Flat output
conversion

Position

Trajectory planner

controller

! =S ¥
e =H
Force==
generator |
Quad-rotor
dynamics

Figure A.1: Simulink block diagram

A.1 Flat Output Conversion

function [eta _ref, p_ddot ref] = fcn(heading ref,

psi_ref = heading_ref(1,1);

X_ddot_ref =

y_ddot_ref

p_ddot_i_ref(1,1);
p_ddot_i_ref(2,1);
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z_ddot_ref = p_ddot_i_ref(3,1);

d =
sqrt(x_ddot_ref*x_ddot ref+y_ddot ref*y ddot ref+(z_ddot ref+9.81)*(
z_ddot_ref+9.81));

phi_ref = asin((x_ddot_ref*sin(psi_ref) -

y_ddot_ref*cos(psi_ref))/(d));

theta ref = atan((x_ddot_ref*cos(psi_ref) +

y_ddot_ref*sin(psi_ref))/(z_ddot_ref+9.81));

min_ang = -pi/2;

max_ang pi/2;

if (phi_ref < min_ang), phi_ref = min_ang; end

max_ang; end

if (phi_ref > max_ang), phi_ref

if (theta_ref < min_ang), theta_ref = min_ang; end

if (theta_ref > max_ang), theta_ref = max_ang; end

eta_ref = [phi_ref; theta ref; psi_ref];

p_ddot_ref = [x_ddot_ref;y _ddot_ref;z_ddot_ref];

A.2 Attitude Controller

function t d = fcn(eta, 0, eta_ddot ref)

global J;
sphi = sin(eta(1,1));
cphi = cos(eta(l,1));
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stht = sin(eta(2,1));
ctht = cos(eta(2,1));
spsi = sin(eta(3,1));
cpsi = cos(eta(3,1));
C=1]J10 -stht;

0 cphi sphi*ctht;

0 -sphi cphi*ctht];

eta_dot inv(C)*0;
phi_dot = eta_dot(1,1);
theta_dot = eta dot(2,1);

psi_dot = eta_dot(3,1);

sphi = sin(eta(l,1));
cphi = cos(eta(l,1));
stht = sin(eta(2,1));
ctht = cos(eta(2,1));
spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));

Cdot =00 -theta_dot*ctht;
0 -phi_dot*sphi phi_dot*cphi*ctht-theta dot*sphi*stht;

0 -phi_dot*cphi -phi_dot*sphi*ctht-theta_dot*cphi*stht];

0_hat = [0 -0(3,1) 0(2,1);
0(3,1) 0 -0(1,1);
-0(2,1) 0(1,1) O];

IH'
o
|

= J*C*eta_ddot_ref + O _hat*J*0 + J*C_dot*eta_dot;
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A.3 Force Generator

function f d = fcn(eta, p_ddot _ref)
global m;

sphi = sin(eta(l1,1));
cphi = cos(eta(l,1));
stht = sin(eta(2,1));
ctht = cos(eta(2,1));
spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));
u = m*[0; 0; (p_ddot_ref(3,1)+ 9.81/(cphi*ctht))];

f d=u(3,1);

A.4 Quadrotor Dynamics

function [0O_dot, p_ddot, eta _dot] = fcn(0, eta, f d, t d)
global KF Km L m g J; % variables

sphi = sin(eta(l1,1));
cphi = cos(eta(l,1));
stht = sin(eta(2,1));
ctht = cos(eta(2,1));
spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));
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0_

u

to

W

F1
F2
F3
F4

tl
t2
t3

t4

= [cpsi*ctht cpsi*stht*sphi-spsi*cphi cpsi*stht*cphi+spsi*sphi;

spsi*ctht spsi*stht*sphi+cpsi*cphi spsi*stht*cphi-cpsi*sphi;

-stht ctht*sphi

=[10 -stht;
0 cphi sphi*ctht;

0 -sphi cphi*ctht];

hat =

0(3,1) 0 -0(1,1);

[0 -0(3,1) 0(2,1);

ctht*cphi]; % rotation matrix

-0(2,1) 0(1,1) 0]; % hatmap for omega

= [KF KF KF
0  L*KF
L*Kf 0

-Km Km

= [f d(1,1); t d(1,1); t d(2,1); t d(3,1)]; % total force and

rque

= inv(MD*u; %

= KfF*w(1,1);
= KfF*w(2,1);
= KF*w(3,1);
= Kf*w(4,1);

= Km*w(1,1);
= Km*w(2,1);
= Km*w(3,1);

= Km*w(4,1);

KF;

0
-L*KF

-Km

each motor angular velocity”™2

%

%

%

%

%

%

%

%

-L*KT;
0;

Km];

front motor force
left motor force
back motor force

right motor force

front motor torque
left motor torque
back motor torque

right motor torque
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F = [0; O; F1+F2+F3+F4]; % total force with respect to body fixed
frame
T = [L*(F2-F4); L*(F1-F3); -tl+t2-t3+t4]; % total torque with re-

spect to body fixed frame

p_ddot = g + R*F/m; % translational dynamics

0_dot = Inv(d)*(T -0 _hat*J*0); % rotational dynamics

eta dot = inv(C)*0; % rotational kinematics
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