

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

석사 학위논문

Trajectory Tracking of Quadrotors Using

Differential Flatness and Computed Torque

Control

Kihoon Choi(최 기 훈 崔 基 訓)

Department of Information and Communication Engineering

정보통신융합공학전공

DGIST

2016

Master's Thesis

석사 학위논문

Trajectory Tracking of Quadrotors Using

Differential Flatness and Computed Torque

Control

Kihoon Choi(최 기 훈 崔 基 訓)

Department of Information and Communication Engineering

정보통신융합공학전공

DGIST

2016

Trajectory Tracking of Quadrotors Using

Differential Flatness and Computed Torque Control

Advisor : Professor Yongsoon Eun

Co-advisor : Professor Dong Eui Chang
 by

Kihoon Choi
Department of Information and Communication Engineering

DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of
the requirements for the degree of Master of Science in the Department of
Information and Communication Engineering. The study was conducted in
accordance with Code of Research Ethics1

05(month). 23(day). 2016(year)

Approved by

Professor 은 용 순 (Signature)
(Advisor)

Professor 장 동 의 (Signature)

(Co-Advisor)

1 Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that

I have not committed any acts that may damage the credibility of my research. These include, but are

not limited to: falsification, thesis written by someone else, distortion of research findings or

plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under

the guidance of my thesis advisor.

Trajectory Tracking of Quadrotors Using

Differential Flatness and Computed Torque Control

Kihoon Choi

Accepted in partial fulfillment of the requirements
for the degree of Master of Science.

 05(month). 23(day). 2016(year)

Head of Committee (인)

Prof. Yongsoon Eun
Committee Member (인)

 Prof. Dong Eui Chang
 Committee Member (인)

 Prof. Kyung-Joon Park

 i

MS/IC
201422019

 최 기 훈. Kihoon Choi. Trajectory Tracking of Quadrotors Using Differential Flatness

and Computed Torque Control. Department of Information and Communication En-

gineering. 2016. 56p. Prof. Eun, Yongsoon. Co-Advisors Prof. Chang, Dong Eui.

ABSTRACT

Unmanned Aerial Vehicles (UAV) has recently been receiving much attention because of a wide

range of potentional applications such as environmental monitoring, disaster monitoring, reconnais-

sance and even deliveries for online shopping. For these applications, position and attitude control is

an important task. However, the challenge of position and attitude control lies in that position of

quadrotor is coupled with roll, pitch and yaw motions in non-linear manner. Motion planning is also

important. Because reference trajectories inconsistent with feasible motion of the quadrotor make

controller design difficult and result in poor tracking performance. The objective of this thesis is to

design controller for quadrotor position and attitude motion tracking control. First, the quadrotor dy-

namics are modeled using reference frames, rotation matrix, force, moments, kinematics and dynam-

ics by Euler-Newton Equation. Then, differential flatness-based motion planning is presented for ref-

erence trajectory generation. Finally, PID type controller and Computed Torque Method controller

are designed for position and attitude control. Results are validated using MATLAB simulations.

Keywords : Flatness, Motion Planning, Trajectory Tracking Control, Quadrotor, UAV

 ii

Contents

Abstract ·· i

Contents ·· ii

List of Figure ··· iv

List of Tables ·· vi

List of Symbols ··· vii

I. Introduction

1.1 Previous work ·· 2

1.2 Motivation ··· 3

1.2 Thesis Structure ·· 3

II. Background

2.1 Computed Torque Method ·· 5

III. Quadrotor Model

3.1 Model Assumptions ·· 13

3.2 Reference Frames ·· 13

3.2.1 The Inertial Frame ·· 14

3.2.2 The Vehicle Frame ··· 14

3.2.3 The Vehicle-1 Frame ··· 15

3.2.4 The Vehicle-2 Frame ··· 15

3.2.5 The Body Frame ·· 16

3.3 Rotation Matrix ··· 16

3.4 Quadrotor Kinematics & Dynamics ··· 17

3.4.1 Kinematic Model ··· 17

3.4.2 Dynamic Model ··· 18

3.4.3 Force and Moments··· 19

3.4.4 State Space Representation ·· 20

IV. Differential Flatness-Based Motion Planning

 iii

4.1 Differential Flatness ··· 21

4.2 Flat Output Trajectory Generation ··· 24

V. Controller Design

5.1 Position Controller ··· 26

5.2 Flat Output Conversion ·· 27

5.3 Force Generator ·· 28

5.4 Attitude Controller by Computed Torque Method ······································· 28

VI. Simulations

6.1 Simulation Parameters ··· 31

6.2 Simulation Results ··· 32

6.3 3D Visualization·· 34

VII. Conclusion and Future Work ·· 35

Appendix A. Simulator Code

A.1 Flat Output Conversion ··· 36

A.2 Attitude Controller ·· 37

A.3 Force Generator ·· 38

A.4 Quadrotor Dynamics ·· 39

 iv

List of Figures

Figure 1.1: Patrol drone(left) , military operation(right) in Korea ···························· 1

Figure 1.2: Asctec Hummingbird(left), Parrot AR.Drone(right) ····························· 3

Figure 2.1: The structure of the robot manipulator control by CTM ························· 7

Figure 2.2: Mass spring damper system example ·· 8

Figure 2.3: The structure of mass spring damper system control by CTM ·················· 8

Figure 2.4: Results of mass spring damper system ··· 12

Figure 2.5: 2-DOF robot dynamics example ·· 9

Figure 2.6: Results of 2-DOF robot dynamics example(𝜃𝜃1) ································ 11

Figure 2.7: Results of 2-DOF robot dynamics example(𝜃𝜃2) ································ 12

Figure 3.1: The inertial frame ··· 14

Figure 3.2: The vehicle frame of quadrotor ··· 14

Figure 3.3: The vehicle-1 frame of quadrotor ··· 15

Figure 3.4: The vehicle-2 frame of quadrotor ··· 16

Figure 3.5: The body frame of quadrotor ·· 16

Figure 4.1: An example of the flat output trajectory ··· 25

Figure 4.2: Flat output trajectories ··· 25

Figure 4.3: V trajectories (state) ·· 26

Figure 4.4: 𝜙𝜙, 𝜃𝜃 and 𝛺𝛺 trajectories (state) ··· 26

Figure 4.5: Force and torque trajectories (control input) ···································· 26

Figure 5.1: The overall structure of the quadrotor control ··································· 27

Figure 5.2: The structure of the position controller for the quadrotor ····················· 27

Figure 5.3: The structure of the attitude controller for the quadrotor ······················ 31

Figure 6.1: Results of one point tracking using motion planning(flat outputs) ··········· 33

Figure 6.2: Results of flat output tracking using motion planning(attitude) ·············· 33

Figure 6.3: Result of circle trajectory tracking ·· 34

Figure 6.4: Quadrotor model using VRML ··· 35

Figure A.1: Simulink block diagram ··· 37

 v

List of Tables

Table 5.1: Simulation Parameters ·· 31

 vi

List of Symbols

𝐹𝐹𝑖𝑖 The inertial frame {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3}

𝐹𝐹𝑣𝑣 The vehicle frame {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3}

𝐹𝐹𝑣𝑣1 The vehicle-1 frame {𝑒𝑒1′ , 𝑒𝑒2′ , 𝑒𝑒3′}

𝐹𝐹𝑣𝑣2 The vehicle-2 frame {𝐸𝐸1′ , 𝐸𝐸2′ ,𝐸𝐸3′}.

𝐹𝐹𝑏𝑏 The body frame {𝐸𝐸1, 𝐸𝐸2, 𝐸𝐸3}

𝑒𝑒1 X-axis in the inertial frame [1 0 0]𝑇𝑇

𝑒𝑒2 Y-axis in the inertial frame [0 1 0]𝑇𝑇

𝑒𝑒3 Z-axis in the inertial frame [0 0 1]𝑇𝑇

𝐸𝐸1 X-axis in the body frame [1 0 0]𝑇𝑇

𝐸𝐸2 Y-axis in the body frame [0 1 0]𝑇𝑇

𝐸𝐸3 Z-axis in the body frame [0 0 1]𝑇𝑇

𝑥𝑥 Position vector in the inertial frame

𝑣𝑣 Linear velocity vector in the inertial frame

𝑣̇𝑣 Linear acceleration vector in the inertial frame

𝑅𝑅 Rotation matrix

𝑆𝑆𝑆𝑆(3) Orthonomal matrix

∙ ̂ The Hat map

𝑠𝑠𝑠𝑠(3) 3 × 3 Skew symmetric matrices.

𝜂𝜂 Euler angle vector

𝜙𝜙 Roll angle

𝜃𝜃 Pitch angle

𝜓𝜓 Yaw angle

Ω Angular velocity in the body frame

Ω̇ Angular acceleration in the body frame

𝜂̇𝜂 Euler angle derivative component vector

C Transformation matrix from the angular velocity in the body frame to the Euler angle rates

𝐽𝐽 Quadrotor;s diagonal inertia matrix

𝐽𝐽𝑥𝑥 Area moment of inertia about 𝐸𝐸1

𝐽𝐽𝑦𝑦 Area moment of inertia about 𝐸𝐸2

𝐽𝐽𝑧𝑧 Area moment of inertia about 𝐸𝐸3

𝜏𝜏 Torque on the quadrotor expressed in the body frame

𝐹𝐹∗ Each motor force(front, left, back, right)

𝜏𝜏∗ Each motor moment(front, left, back, right)

 vii

𝑚𝑚 Quadrotor’s mass

𝑔𝑔 Gravitational acceleration

𝑓𝑓 Total force in the quadrotor

𝑘𝑘𝐹𝐹 Motor force constant

𝑘𝑘𝑀𝑀 Motor moment constant

𝜔𝜔∗2 Angular speed squared of each motors

𝜔𝜔𝑓𝑓2 Angular speed squared of the front motor

𝜔𝜔𝑙𝑙
2 Angular speed squared of the left motor

𝜔𝜔𝑏𝑏
2 Angular speed squared of the back motor

𝜔𝜔𝑟𝑟2 Angular speed squared of the right motor

𝑙𝑙 Length from rotors to the center of the quadrotor

𝑦𝑦(𝑡𝑡) The flat output

𝑋𝑋(𝑡𝑡) The state vector

𝑈𝑈(𝑡𝑡) The control input vector

𝑘𝑘𝐷𝐷 Derivative gain of attitude controller

𝑘𝑘𝑃𝑃 Proportional gain of attitude controller

𝑘𝑘𝐼𝐼𝐼𝐼 Integral gain of position controller

𝑘𝑘𝐷𝐷𝐷𝐷 Derivative gain of position controller

𝑘𝑘𝑃𝑃𝑃𝑃 Proportional gain of position controller

𝜂𝜂𝑟𝑟 Euler angle reference vector

𝑥𝑥𝑟𝑟 Position reference vector

𝛩𝛩 The joint variables vector

𝛩𝛩𝑑𝑑 Desired joint variables

𝑀𝑀(𝛩𝛩) The inertia term matrix of the robot manipulator

𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� The vector of centrifugal and Coriolis terms

𝐺𝐺(𝛩𝛩) the vector of gravity terms

𝐸𝐸 The error about desired joint variables and real joint variables

𝐾𝐾𝑣𝑣 The Computed Torque Method controller gain about 𝐸̇𝐸

𝐾𝐾𝑃𝑃 The Computed Torque Method controller gain about 𝐸𝐸

𝛼𝛼 The inertia term matrix

𝛽𝛽 The centrifugal and Coriolis term matrix

- 1 -

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAV) has recently been receiving much attention be-

cause of a wide range of potentional applications such as environmental monitoring,

disaster monitoring, reconnaissance and even deliveries for only shopping. UAV also

is used for patrols and military operations in Korea. It is described by Figure 1.1.

Figure 1.1: Patrol drone(left), military operation(right) in Korea

For these applications, controlling the position and attitude is an important task. The

challenge of position and attitude control lies in that position of quadrotor is coupled

with roll, pitch and yaw motions in non-linear manner. Motion planning is also needed.

Because reference trajectories inconsistent with feasible motion of the quadrotor make

controller design difficult and result in poor tracking performance. Quadrotors usually

have a small capacity of the battery so flight time of quadrotors is usually 20 ~ 30

minutes. Therefore, there is a need for more appropriate motion trajectory generation.

Because reference trajectories inconsistent with feasible motion trajectories of the

- 2 -

quadrotor reduce the life of motors. So motion trajectory generation methods are more

important. To solve this problem, many researchers propose a variety of quadrotor

controller and motion planning. After then, we introduce quadrotor control and motion

planning method briefly.

1.1 Previous Work

There have been many papers on quadrotor control systems and motion planning.

When we search the previous work for our research, we focus on quadrotor control

and UAV motion planning. First, we introduce a variety of quadrotor controls.

Bouabdallah et al. proposed the usage of PID and LQ control techniques [1] to be

applied on the quadrotor which was able to stabilize the quadrotor attitude of its hov-

ering. After then, Bouabdallah and Siegwart proposed the use of back-stepping and

sliding-mode nonlinear control methods [2] to control the quadrotor which gave good

performance in the presence of disturbances. ChangSu et al. proposed a passivity-

based adaptive back-stepping control for quadrotor with teleoperation system [3]. And

Taeyoung proposed 2 types of attitude tracking controller which are smooth control

and hybrid control scheme for a rigid body [4] and first method can guarantee almost

semi-global exponential stability and second method verify global exponential stabil-

ity. Tse-Huai et al. also proposed attitude tracking control using angular velocity ob-

server when angular velocity measurements cannot be available [5].

In case of the differential flatness-based motion planning, Murray firstly proposed

this method for aircraft [6]. Since then, many papers used its method [7-8]. Mellinger

et al. proposed Mixed-Integer Quadratic Program (MIQP) motion planning for UAV

[9]. Turpin et al. proposed Concurrent Assignment and Planning (CAPT) for multiple

UAVs [10]. Another motion planning methods are RRT. Richter et al. recently pro-

posed collision free motion planning using RRT for UAV [11].

This thesis also proposes the quadrotor position and attitude controller and flatness-

based motion planning as previous work.

- 3 -

 1.2 Motivation

The Motivation of this thesis is to design controller for quadrotor position and attitude

motion tracking controller for our research scenarios which are attack scenarios using

quadrotor. For attack scenarios, quadrotor motion planning is essential and we have

quadrotor platforms – Hummingbird and AR.Drone 2.0.

Figure 1.2: Asctec Hummingbird(left), Parrot AR.Drone(right)

Because quadrotor platforms are expensive and friable so simulation validations are

important and necessary before experiment validations. This thesis focuses on the

quadrotor simulator. For this simulator, first, the detailed quadrotor dynamics are

modeled using reference frames, rotation matrix, force, moments, kinematics and dy-

namics by Euler-Newton Equation. Then, differential flatness-based motion planning

is presented for reference trajectory generation. Finally, PID type controller and Com-

puted Torque Method controller are designed for position and attitude control. Results

are validated using MATLAB simulations.

1.3 Thesis Structure

This thesis structure of this thesis is as follows. Chapter 2 presents the quadrotor math-

ematical modeling based on the Newton-Euler method including the reference frames,

- 4 -

rotation matrix, force, moments, kinematics and dynamics. Chapter 3 shows the flat-

ness definition and the reference trajectory generation using differential flatness-based

motion planning. Chapter 4 presents the structure of total quadrotor control. Chapter

5 shows the simulation results using Matlab Simulink. At last, Chapter 6 shows con-

clusion and future work for this thesis.

- 5 -

Chapter 2

Background

In this paper, we design quadrotor position and attitude tracking controller. Especially,

attitude controller is designed using Computed Torque Method (CTM). To help read-

ers understand attitude controller, this chapter is prepared.

2.1 Computed Torque Method

Computed Torque Method [12] is the application of robot manipulator control. This

method usually used the rotational motion control of robot manipulator. In this sub-

section, Computed Torque Method is simply introduced.

The rigid body dynamics of robot manipulator have the form.

𝜏𝜏 = 𝑀𝑀(𝛩𝛩)𝛩̈𝛩 + 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� + 𝐺𝐺(𝛩𝛩) (2.1)

where 𝛩𝛩 ∈ 𝑅𝑅𝑛𝑛 is the joint variables vector, 𝑀𝑀(𝛩𝛩) ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 is the inertia term matrix

of the robot manipulator, 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� ∈ 𝑅𝑅𝑛𝑛 is the vector of centrifugal and coriolis terms

and 𝐺𝐺(𝛩𝛩) ∈ 𝑅𝑅𝑛𝑛 is the vector of gravity terms.

𝑀𝑀(𝛩𝛩), 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩�, 𝐺𝐺(𝛩𝛩) consist of 𝛩𝛩 or 𝛩̇𝛩 and is so complicated. To control robot

manipulator, choose the control input.

𝜏𝜏 = 𝛼𝛼𝜏𝜏′ + 𝛽𝛽 (2.2)

where 𝜏𝜏 ∈ 𝑅𝑅𝑛𝑛 is the vector of joint torques, 𝛼𝛼 = 𝑀𝑀(𝛩𝛩) and 𝛽𝛽 = 𝑉𝑉�𝛩𝛩, 𝛩̇𝛩� + 𝐺𝐺(𝛩𝛩)

- 6 -

We introduce new input 𝜏𝜏′ and it is given by

𝜏𝜏′ = 𝛩̈𝛩𝑑𝑑 + 𝐾𝐾𝑣𝑣𝐸̇𝐸 + 𝐾𝐾𝑃𝑃𝐸𝐸 (2.3)

where desired joint variables 𝛩𝛩𝑑𝑑, joint variable error 𝐸𝐸 = 𝛩𝛩𝑑𝑑 − 𝛩𝛩, 𝐾𝐾𝑣𝑣 is the con-

troller gain about 𝐸̇𝐸 and 𝐾𝐾𝑃𝑃 is the controller gain about 𝐸𝐸.

Using equation (2.2) and (2.3), the closed loop dynamics is characterized by error

equation.

𝐸̈𝐸 + 𝐾𝐾𝑣𝑣𝐸̇𝐸 + 𝐾𝐾𝑃𝑃𝐸𝐸 = 0 (2.4)

According to the linear system theory, convergence of the tracking error to zero is

guaranteed [12]. Figure 2.1 is illustrated by the overall structure of robot manipulator

control.

Figure 2.1: The structure of the robot manipulator control by CTM.

To help readers understand Computed Torque Method, mass spring damper system

and 2-DOF robot manipulator examples are prepared.

- 7 -

Figure 2.2: Mass spring damper system example.

First of all, we show an example of the linear system for understanding. Figure 2.2

shows mass spring damper system. Variable 𝑚𝑚 is the mass. Variable 𝑏𝑏 is the damp-

ing coefficient. Variable 𝑘𝑘 is the spring constant. Variable 𝑥𝑥 is position of the mass

and Variable 𝑓𝑓 is force which is control input of mass spring damper system. To

describe mass spring damper system, we consider state space representation. It is

given by

�𝑥̇𝑥1𝑥̇𝑥2
� = �

0 1
−𝑘𝑘 𝑚𝑚� −𝑏𝑏 𝑚𝑚�

� �
𝑥𝑥1
𝑥𝑥2� + �

0
1 𝑚𝑚�

�𝑢𝑢 (2.5)

𝑦𝑦 = [1 0] �
𝑥𝑥1
𝑥𝑥2�

 where 𝑥𝑥1 is position of the mass, 𝑥𝑥2 is velocity of the mass.

 To control mass spring damper system, we choose the control input 𝑓𝑓 as follows:

𝑓𝑓 = 𝛼𝛼𝑓𝑓′ + 𝛽𝛽 (2.6)

where 𝛼𝛼 = 𝑚𝑚, 𝛽𝛽 = 𝑏𝑏𝑥̇𝑥 + 𝑘𝑘𝑘𝑘.

We can choose new control input 𝑓𝑓′ as follows:

- 8 -

𝑓𝑓′ = 𝑥̈𝑥𝑟𝑟 + 𝑘𝑘𝐷𝐷𝑒̇𝑒𝑥𝑥 + 𝑘𝑘𝑃𝑃𝑒𝑒𝑥𝑥 (2.7)

where 𝑒𝑒𝑥𝑥 is position error and 𝑒̇𝑒𝑥𝑥 is velocity error.

 Figure 2.3 is the closed-loop control system of mass spring damper system using Com-

puted Torque Method.

Figure 2.3: The structure of mass spring damper system control by CTM.

We validated mass spring damper system example using MATLAB simulation. Posi-

tion reference is 𝑥𝑥𝑟𝑟 = 1m. The result shows a stable dynamics. Result is illustrated

in Figure 2.4.

Figure 2.4: Result of mass spring damper system example.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(sec)

po
si

tio
n(

m
)

result - position

Reference
actual position

- 9 -

Figure 2.5: 2-DOF robot dynamics example.

Lastly, we show the nonlinear system employing Computed Torque Method. Figure

2.5 shows 2-DOF robot manipulator. Variable 𝑀𝑀1 and 𝑀𝑀2 are the point mass of

each link. Variable 𝐿𝐿1 and 𝐿𝐿2 are the length of each link. Variable 𝜃𝜃1 and 𝜃𝜃2 are

the angle of each link. Variable 𝑔𝑔 is the gravitational acceleration. To describe 2-

DOF robot dynamics, we consider Euler-Lagrange method. Positions of each links are

given by

𝑥𝑥1 = 𝐿𝐿1 sin 𝜃𝜃1

𝑦𝑦1 = 𝐿𝐿1 cos 𝜃𝜃1 (2.8)

𝑥𝑥2 = 𝐿𝐿1 sin𝜃𝜃1 + 𝐿𝐿2 sin(𝜃𝜃1 +𝜃𝜃2)

𝑦𝑦2 = 𝐿𝐿1 cos 𝜃𝜃1 + 𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2).

 So, kinetic energy of robot manipulator can be described as

Κ = 1
2
𝑀𝑀1𝑥̇𝑥12 + 1

2
𝑀𝑀1𝑦̇𝑦12 + 1

2
𝑀𝑀2𝑥̇𝑥22 + 1

2
𝑀𝑀2𝑦̇𝑦22. (2.9)

 We simplified equation (2.6). It is given by

Κ = 1
2

(𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿12𝜃̇𝜃12 + 1
2
𝑀𝑀2𝐿𝐿22�𝜃̇𝜃12 + 𝜃̇𝜃22� (2.10)

+ 𝑀𝑀2𝐿𝐿22𝜃̇𝜃1𝜃̇𝜃2 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2�𝜃̇𝜃1𝜃̇𝜃2 + 𝜃̇𝜃12� cos 𝜃𝜃2.

- 10 -

 And potential energy of robot manipulator can be described as

 P = 𝑀𝑀1𝑔𝑔𝐿𝐿1 cos 𝜃𝜃1 + 𝑀𝑀2𝑔𝑔(𝐿𝐿1 cos 𝜃𝜃1 + 𝐿𝐿2 cos(𝜃𝜃1 + 𝜃𝜃2)). (2.11)

Lagrange equation is ℒ = Κ − P and by Euler-Lagrange method, robot dynamics is

given by

𝜏𝜏 = 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝜕𝜕ℒ
𝜕𝜕Θ̇
� − 𝜕𝜕ℒ

𝜕𝜕Θ
. (2.12)

Equation (2.9) can change equation (2.1) forms. Therefore, final 2-DOF robot manip-

ulator dynamics is given by

�
𝜏𝜏1
𝜏𝜏2� = �

(𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿12 + 𝑀𝑀2𝐿𝐿22 + 2𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 𝑀𝑀2𝐿𝐿22 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2
𝑀𝑀2𝐿𝐿22 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 𝑀𝑀2𝐿𝐿22

� �𝜃̈𝜃1
𝜃̈𝜃2
�

+ �−𝑀𝑀2𝐿𝐿1𝐿𝐿2(2𝜃̇𝜃1𝜃̇𝜃2 + 𝜃̇𝜃22) sin𝜃𝜃2
𝑀𝑀2𝐿𝐿1𝐿𝐿2𝜃̇𝜃12 sin𝜃𝜃2

� (2.13)

+ �−
(𝑀𝑀1 + 𝑀𝑀2)𝑔𝑔𝐿𝐿1 sin𝜃𝜃1 −𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)

−𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2) �.

 To control robot manipulator, we choose the control input 𝜏𝜏 as follows:

𝜏𝜏 = 𝛼𝛼𝜏𝜏′ + 𝛽𝛽 (2.14)

where 𝛼𝛼 = �
(𝑀𝑀1 + 𝑀𝑀2)𝐿𝐿1

2 + 𝑀𝑀2𝐿𝐿2
2 + 2𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos 𝜃𝜃2 𝑀𝑀2𝐿𝐿2

2 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2

𝑀𝑀2𝐿𝐿2
2 + 𝑀𝑀2𝐿𝐿1𝐿𝐿2 cos𝜃𝜃2 𝑀𝑀2𝐿𝐿2

2 �,

𝛽𝛽 = �−𝑀𝑀2𝐿𝐿1𝐿𝐿2(2𝜃̇𝜃1𝜃̇𝜃2 + 𝜃̇𝜃2
2) sin 𝜃𝜃2

𝑀𝑀2𝐿𝐿1𝐿𝐿2𝜃̇𝜃1
2 sin𝜃𝜃2

� + �−(𝑀𝑀1 + 𝑀𝑀2)𝑔𝑔𝐿𝐿1 sin 𝜃𝜃1 −𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2)
−𝑀𝑀2𝑔𝑔𝐿𝐿2 sin(𝜃𝜃1 + 𝜃𝜃2) �.

And we also choose new control input 𝜏𝜏′ as follows:

- 11 -

𝜏𝜏′ = 𝜃̈𝜃𝑟𝑟 + 𝑘𝑘𝐷𝐷𝑒̇𝑒𝜃𝜃 + 𝑘𝑘𝑃𝑃𝑒𝑒𝜃𝜃 (2.15)

where 𝑒𝑒𝜃𝜃 is angle error and 𝑒̇𝑒𝜃𝜃 is angle velocity error.

 Using equation (2.14) and (2.15), the closed loop dynamics is characterized by error

equation.

𝑒̈𝑒𝜃𝜃 + 𝑘𝑘𝐷𝐷𝑒̇𝑒𝜃𝜃 + 𝑘𝑘𝑃𝑃𝑒𝑒𝜃𝜃 = 0 (2.16)

And then we validated robot manipulator control example using MATLAB simulation.

Each angle references are 𝜃𝜃𝑟𝑟_1 = 0.8rad and 𝜃𝜃𝑟𝑟_2 = 0.4rad. The results show a stable

dynamics. Results are illustrated in Figure 2.6.

Figure 2.6: Results of 2-DOF robot dynamics example(𝜃𝜃1)

- 12 -

Figure 2.8: Results of 2-DOF robot dynamics example(𝜃𝜃2)

- 13 -

 Chapter 3

Quadrotor Model

The first step is to create an accurate and detailed mathematical model of the quadrotor

in control design. In this chapter, we derive quadrotor dynamics using reference frame,

rotation matrix, force and moments, kinematics and dynamics by Euler-Newton Equa-

tion.

3.1 Model Assumptions

In this subsection, assumptions made to obtain a simple but useful model are explained.

(1) The quadrotor is rigid body.

(2) The structure of quadrotor is symmetric.

(3) Aerodynamic drag forces are neglected.

Assumption 1 and 2 are simplified inertia matrix 𝐽𝐽 which is diagonal form and

constant matrix. Assumption 3 is useful because aerodynamics drag forces are very

small so these forces are neglected in indoor environment.

3.2 Reference Frames

For the quadrotor, there are several coordinate systems [13]. This section is defined

following coordinate frames – the inertial frame, the vehicle frame, the vehicle-1

frame, the vehicle-2 frame, and the body frame. Especially, the inertial frame and the

body frame are important because those can represent the rotation of the quadrotor.

- 14 -

3.2.1 The Inertial Frame

The inertial frame is the orthonomal basis fixed in space {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3}. It means that the

inertial frame does not change when the robot moves and it is absolute frame in the

space. Figure 3.1 is illustrated.

Figure 3.1: The inertial frame.

3.2.2 The Vehicle Frame

The origin of the vehicle frame 𝐹𝐹𝑣𝑣 is at the center of mass of the quadrotor. However,

the axes of 𝐹𝐹𝑣𝑣 are aligned with the axis of the inertial frame 𝐹𝐹𝑖𝑖. The x-axis of the

vehicle frame points 𝑒𝑒1, the y-axis of the vehicle frame points 𝑒𝑒2, the z-axis of the

vehicle frame points 𝑒𝑒3.

Figure 3.2: The vehicle frame of quadrotor.

3.2.3 The Vehicle-1 Frame

- 15 -

The vehicle-1 frame 𝐹𝐹𝑣𝑣1 represents the rotation of the yaw angle (𝜓𝜓) {𝑒𝑒1′ , 𝑒𝑒2′ , 𝑒𝑒3′}.

The vehicle-1 frame is the yaw rotation coordinate frame which is positively rotated

about 𝑒𝑒3 by yaw angle 𝜓𝜓. The transformation from 𝐹𝐹𝑣𝑣 to 𝐹𝐹𝑣𝑣1 is defined as

𝑅𝑅𝑧𝑧(𝜓𝜓) = �
cos𝜓𝜓 sin𝜓𝜓 0
−sin𝜓𝜓 cos𝜓𝜓 0

0 0 1
� (3.1)

Figure 3.3: The vehicle-1 frame of quadrotor.

3.2.4 The Vehicle-2 Frame

The vehicle-2 frame 𝐹𝐹𝑣𝑣2 represents the rotation of the pitch angle (𝜃𝜃) {𝐸𝐸1′ , 𝐸𝐸2′ ,𝐸𝐸3′}.

The vehicle-2 frame is the pitch rotation coordinate frame which is positively rotated

about 𝑒𝑒1′ by pitch angle 𝜃𝜃. The transformation from 𝐹𝐹𝑣𝑣1 to 𝐹𝐹𝑣𝑣2 is defined as

𝑅𝑅𝑦𝑦(𝜃𝜃) = �
cos𝜃𝜃 0 −sin𝜃𝜃

0 1 0
sin𝜃𝜃 0 cos𝜃𝜃

� (3.2)

Figure 3.4: The vehicle-2 frame of quadrotor.

- 16 -

3.2.5 The Body Frame

The body frame 𝐹𝐹𝑏𝑏 represents rotation of the roll angle (𝜙𝜙) {𝐸𝐸1, 𝐸𝐸2, 𝐸𝐸3}. The body

frame is the roll rotation coordinate frame which is positively rotated about 𝐸𝐸2′ by

roll angle 𝜙𝜙. The transformation from 𝐹𝐹𝑣𝑣2 to 𝐹𝐹𝑏𝑏 is defined as

𝑅𝑅𝑥𝑥(𝜙𝜙) = �
1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 −sin𝜙𝜙 cos𝜙𝜙

� (3.3)

Figure 3.5: The body frame of quadrotor.

3.3 Rotation Matrix

The vector in the body frame does not apply the vector in the inertial frame. So the

relationship between the body frame and the inertial frame is needed. It called rotation

matrix. The rotation matrix 𝑅𝑅 ∈ 𝑆𝑆𝑆𝑆(3) which is defined as 𝑆𝑆𝑆𝑆(3) ≜

{𝐴𝐴 ∈ 𝑅𝑅3×3|𝐴𝐴𝑇𝑇𝐴𝐴 = 𝐼𝐼3,𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴) = 1}. We define rotation matrix from the body frame to

the inertial frame using ZYX Euler angles as

𝑅𝑅 = �
cos𝜃𝜃cos𝜓𝜓 sin𝜙𝜙sin𝜃𝜃cos𝜓𝜓 − cos𝜙𝜙sin𝜓𝜓 cos𝜙𝜙sin𝜃𝜃cos𝜓𝜓 + sin𝜙𝜙sin𝜓𝜓
cos𝜃𝜃sin𝜓𝜓 sin𝜙𝜙sin𝜃𝜃sin𝜓𝜓 + cos𝜙𝜙cos𝜓𝜓 cos𝜙𝜙sin𝜃𝜃sin𝜓𝜓 − sin𝜙𝜙cos𝜓𝜓
−sin𝜃𝜃 sin𝜙𝜙cos𝜃𝜃 cos𝜙𝜙cos𝜃𝜃

� (3.4)

3.4 Quadrotor Kinematics & Dynamics

- 17 -

Kinematics is a viewpoint which studies the motion of a body without consideration

of the forces and torques acting on it. Kinematics usually don’t use 1-DOF motion

which is examples of dynamic models so it is important over 3-DOF motion descrip-

tion.

The dynamic systems can be gotten using two famous methods which are Newton-

Euler method and Euler-Lagrange method. Both methods result in equivalent set of

equations. For simple dynamics, Euler-Lagrange method is the useful choice because

it is easy. However, the dynamics complexity increases, it is difficult to apply Euler-

Lagrange method so it is reason that the Newton-Euler method has its advantages. We

consider Newton-Euler method to get the quadrotor dynamics.

In this section, the quadrotor kinematics and dynamics which will be useful to get

the equations of motion for the quadrotor are presented.

3.4.1 Kinematic Model

The translational motion of kinematics can be defined 𝑥𝑥 = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3]𝑇𝑇 is posi-

tion vector of the quadrotor in the inertial frame and 𝑣𝑣 = [𝑣𝑣1 𝑣𝑣2 𝑣𝑣3]𝑇𝑇 is linear

velocity vector of the quadrotor in the inertial frame. It is given by

𝑥̇𝑥1 = 𝑣𝑣1

𝑥̇𝑥2 = 𝑣𝑣2 (3.5)

𝑥̇𝑥3 = 𝑣𝑣3

Next, the rotational motion equation of kinematics can be defined using the rela-

tionship between angular velocity in the body frame Ω = [𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇, Euler angle

vector 𝜂𝜂 = [𝜙𝜙 𝜃𝜃 𝜓𝜓]𝑇𝑇 and Euler angle derivative component vector 𝜂̇𝜂 =

 [𝜙̇𝜙 𝜃̇𝜃 𝜓̇𝜓]𝑇𝑇 and it is given by

- 18 -

�
𝑝𝑝
𝑞𝑞
𝑟𝑟
� = �

𝜙̇𝜙
0
0
� + 𝑅𝑅𝑥𝑥(𝜙𝜙) �

0
𝜃̇𝜃
0
� + 𝑅𝑅𝑥𝑥(𝜙𝜙)𝑅𝑅𝑦𝑦(𝜃𝜃) �

0
0
𝜓̇𝜓
� = �

1 0 −sin𝜃𝜃
0 cos𝜙𝜙 sin𝜙𝜙cos𝜃𝜃
0 −sin𝜙𝜙 cos𝜙𝜙cos𝜃𝜃

� �
𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
�. (3.6)

The final equation form of the rotational motion is given by

𝜙̇𝜙 = 𝑝𝑝 + 𝑞𝑞sin𝜙𝜙tan𝜃𝜃 + 𝑟𝑟cos𝜙𝜙tan𝜃𝜃

𝜃̇𝜃 = 𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙 (3.7)

𝜓̇𝜓 = 𝑞𝑞
sin𝜙𝜙
cos𝜃𝜃

+ 𝑟𝑟
cos𝜙𝜙
cos𝜃𝜃

3.4.2 Dynamic Model

The dynamics of the quadrotor can be defined representing the rotational motion and

the translational motion, and the translational motion equation of the quadrotor ob-

tained from the second law of Newton. It is given by

𝑣̇𝑣1 = (cos𝜙𝜙sin𝜃𝜃cos𝜓𝜓 + sin𝜙𝜙sin𝜓𝜓)
𝑓𝑓
𝑚𝑚

𝑣̇𝑣2 = (cos𝜙𝜙sin𝜃𝜃sin𝜓𝜓 − sin𝜙𝜙cos𝜓𝜓) 𝑓𝑓
𝑚𝑚

 (3.8)

𝑣̇𝑣3 = −𝑔𝑔 + (cos𝜙𝜙cos𝜃𝜃)
𝑓𝑓
𝑚𝑚

where 𝑚𝑚 ∈ 𝑅𝑅 is quadrotor’s mass, 𝑔𝑔 ∈ 𝑅𝑅 is gravitational acceleration, 𝑓𝑓 ∈ 𝑅𝑅 is

total force in the quadrotor, 𝑣̇𝑣1 , 𝑣̇𝑣2 and 𝑣̇𝑣3 are linear acceleration in the inertial

frame.

The rotational motion equation of the quadrotor obtained from the second law of

Newton. It is given by

𝑝̇𝑝 =
𝐽𝐽𝑦𝑦 − 𝐽𝐽𝑧𝑧
𝐽𝐽𝑥𝑥

𝑞𝑞𝑞𝑞 +
𝜏𝜏1
𝐽𝐽𝑥𝑥

- 19 -

𝑞̇𝑞 = 𝐽𝐽𝑧𝑧−𝐽𝐽𝑥𝑥
𝐽𝐽𝑦𝑦

𝑝𝑝𝑝𝑝 + 𝜏𝜏2
𝐽𝐽𝑦𝑦

 (3.9)

𝑟̇𝑟 =
𝐽𝐽𝑥𝑥 − 𝐽𝐽𝑦𝑦
𝐽𝐽𝑧𝑧

𝑝𝑝𝑝𝑝 +
𝜏𝜏3
𝐽𝐽𝑧𝑧

where 𝐽𝐽𝑥𝑥 , 𝐽𝐽𝑦𝑦 and 𝐽𝐽𝑧𝑧 are diagonal components of the inertia matrix 𝐽𝐽, 𝜏𝜏1, 𝜏𝜏2 and

𝜏𝜏3 are torques on the quadrotor expressed in the body frame.

3.4.3 Force and Moments

In this subsection, we describe the relationship between total forces and torques with

the angular speed squared of each motors 𝜔𝜔∗2.

The force and torque of each motors can be expressed as

𝐹𝐹∗ = 𝑘𝑘𝐹𝐹𝜔𝜔∗2 (3.10)

𝜏𝜏∗ = 𝑘𝑘𝑀𝑀𝜔𝜔∗2

where 𝑘𝑘𝐹𝐹 ,𝑘𝑘𝑀𝑀 are motor force constant and motor moment constant, 𝜔𝜔∗2 are angular

speed squared of each motors.

The forces and torques on the quadrotor can be written in matrix form as

�

𝑓𝑓
𝜏𝜏1
𝜏𝜏2
𝜏𝜏3

� = �

𝑘𝑘𝐹𝐹 𝑘𝑘𝐹𝐹 𝑘𝑘𝐹𝐹 𝑘𝑘𝐹𝐹
0 𝑙𝑙𝑘𝑘𝐹𝐹 0 −𝑙𝑙𝑘𝑘𝐹𝐹
𝑙𝑙𝑘𝑘𝐹𝐹 0 −𝑙𝑙𝑘𝑘𝐹𝐹 0
−𝑘𝑘𝑀𝑀 𝑘𝑘𝑀𝑀 −𝑘𝑘𝑀𝑀 𝑘𝑘𝑀𝑀

�

⎣
⎢
⎢
⎢
⎡𝜔𝜔𝑓𝑓

2

𝜔𝜔𝑙𝑙
2

𝜔𝜔𝑏𝑏
2

𝜔𝜔𝑟𝑟2⎦
⎥
⎥
⎥
⎤
 (3.11)

where 𝑙𝑙 is length from rotors to the center of the quadrotor.

3.4.4 State Space Representation

- 20 -

The state space representation model of the quadrotor is essential to verify that quad-

rotor dynamics is flat system. So in this subsection, first, we define quadrotor’s state

vector 𝑋𝑋(𝑡𝑡) which defines the position and linear velocity in the inertial frame, Euler

angle and angular velocity in the body frame. It is given by

𝑋𝑋(𝑡𝑡) = [𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝜙𝜙 𝜃𝜃 𝜓𝜓 𝑝𝑝 𝑞𝑞 𝑟𝑟]𝑇𝑇 (3.11)

And control input vector 𝑈𝑈(𝑡𝑡) is defined as

𝑈𝑈(𝑡𝑡) = [𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4]𝑇𝑇 = [𝑓𝑓 𝜏𝜏1 𝜏𝜏2 𝜏𝜏3]𝑇𝑇 (3.12)

The complete mathematical model of the quadrotor can be written in a state space

representation using equation (3.5), (3.7), (3.8), (3.9), (3.11) and (3.12). It is given by

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥̇𝑥1
𝑥̇𝑥2
𝑥̇𝑥3
𝑣̇𝑣1
𝑣̇𝑣2
𝑣̇𝑣3
𝜙̇𝜙
𝜃̇𝜃
𝜓̇𝜓
𝑝̇𝑝
𝑞̇𝑞
𝑟̇𝑟 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑣𝑣1
𝑣𝑣2
𝑣𝑣3

(cos𝜙𝜙sin𝜃𝜃cos𝜓𝜓 + sin𝜙𝜙sin𝜓𝜓) 𝑢𝑢1
𝑚𝑚

(cos𝜙𝜙sin𝜃𝜃sin𝜓𝜓 − sin𝜙𝜙cos𝜓𝜓) 𝑢𝑢1
𝑚𝑚

−𝑔𝑔 + (cos𝜙𝜙cos𝜃𝜃) 𝑢𝑢1
𝑚𝑚

𝑝𝑝 + 𝑞𝑞sin𝜙𝜙tan𝜃𝜃 + 𝑟𝑟cos𝜙𝜙tan𝜃𝜃
𝑞𝑞cos𝜙𝜙 − 𝑟𝑟sin𝜙𝜙
𝑞𝑞 sin𝜙𝜙
cos𝜃𝜃

+ 𝑟𝑟 cos𝜙𝜙
cos𝜃𝜃

𝐽𝐽𝑦𝑦−𝐽𝐽𝑧𝑧
𝐽𝐽𝑥𝑥

𝑞𝑞𝑞𝑞 + 𝑢𝑢2
𝐽𝐽𝑥𝑥

𝐽𝐽𝑧𝑧−𝐽𝐽𝑥𝑥
𝐽𝐽𝑦𝑦

𝑝𝑝𝑝𝑝 + 𝑢𝑢2
𝐽𝐽𝑦𝑦

𝐽𝐽𝑥𝑥−𝐽𝐽𝑦𝑦
𝐽𝐽𝑧𝑧

𝑝𝑝𝑝𝑝 + 𝑢𝑢4
𝐽𝐽𝑧𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.13)

- 21 -

Chapter 4

Differential Flatness-Based Motion Planning

In Chapter 1, we explain the importance of quadrotor motion planning. And one of

motion planning methods is differential flatness-based motion planning which makes

smooth trajectories. In this chapter, first, we verify that quadrotor dynamics are flat

system. And then, we focus on how to generate motion trajectories.

4.1 Differential Flatness

In this section, we show that the quadrotor dynamics with the four inputs is differen-

tially flat. If system is a flat, we can consider the smooth motion trajectory generation.

First, we define flatness [14].

Definition 1. A dynamic system 𝑋̇𝑋 = 𝑓𝑓(𝑋𝑋,𝑈𝑈), 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛, 𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚, is flat if and only

if there exist variables ∃ 𝑦𝑦(𝑡𝑡) ∈ 𝑅𝑅𝑚𝑚

𝑋𝑋(𝑡𝑡) = 𝜑𝜑0�𝑦𝑦(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡),⋯ ,𝑦𝑦𝑘𝑘(𝑡𝑡)�

𝑈𝑈(𝑡𝑡) = 𝜑𝜑1 �𝑦𝑦(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡),⋯ ,𝑦𝑦(𝑙𝑙)(𝑡𝑡)� (4.1)

𝑑𝑑
𝑑𝑑𝑑𝑑
𝜑𝜑0 �𝑦𝑦(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡),⋯ ,𝑦𝑦(𝑘𝑘)(𝑡𝑡)� = 𝑓𝑓(𝜑𝜑0 �𝑦𝑦(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡),⋯ , 𝑦𝑦(𝑘𝑘)(𝑡𝑡)� , 𝜑𝜑1 �𝑦𝑦(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡),⋯ , 𝑦𝑦(𝑙𝑙)(𝑡𝑡)�)

In this thesis, our choice of the flat outputs for the quadrotor are given by

𝑦𝑦1 = 𝑥𝑥1

𝑦𝑦2 = 𝑥𝑥2 (4.2)

𝑦𝑦3 = 𝑥𝑥3

- 22 -

𝑦𝑦4 = 𝜓𝜓

After then, we prove the quadrotor is flat system using our choice of the flat outputs.

To prove a flat system, the parameterization of other state using flat outputs must be

needed. By substituting the flat outputs to the state 𝑋𝑋(𝑡𝑡), they are given by

𝑣𝑣1 = 𝑦̇𝑦1

𝑣𝑣2 = 𝑦̇𝑦2

𝑣𝑣3 = 𝑦̇𝑦3

𝜙𝜙 = sin−1 𝑦̈𝑦1 sin𝑦𝑦4−𝑦̈𝑦2 cos𝑦𝑦4

�𝑦̈𝑦12+𝑦̈𝑦22+�𝑦̈𝑦32+9.8�
2
 (4.3)

𝜃𝜃 = tan−1
𝑦̈𝑦1 cos 𝑦𝑦4 + 𝑦̈𝑦2 sin𝑦𝑦4

𝑦̈𝑦3 + 9.8

𝑝𝑝 = 𝜙̇𝜙 − 𝜓̇𝜓sin𝜃𝜃

𝑞𝑞 = 𝜃̇𝜃cos𝜙𝜙 + 𝜓̇𝜓sin𝜙𝜙cos𝜃𝜃

𝑟𝑟 = −𝜃̇𝜃sin𝜙𝜙 + 𝜓̇𝜓cos𝜙𝜙cos𝜃𝜃

The parameterization of 𝜙̇𝜙, 𝜃̇𝜃 in function of the flat outputs are needed to verify that

𝑝𝑝, 𝑞𝑞, 𝑟𝑟 become parameterization of the flat outputs.

𝜙̇𝜙 =

(𝑦𝑦1sin𝑦𝑦4+𝑦̈𝑦1𝑦̇𝑦4cos𝑦𝑦4−𝑦𝑦2cos𝑦𝑦4+𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)��𝑦̈𝑦12+𝑦̈𝑦22+(𝑦̈𝑦3+9.8)2�

−(𝑦̈𝑦1sin𝑦𝑦4−𝑦̈𝑦2cos𝑦𝑦4)(0.5 1

�𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2
)(2𝑦𝑦1𝑦̈𝑦1+2𝑦𝑦2𝑦̈𝑦2+2𝑦⃛𝑦3𝑦̈𝑦3+19.6𝑦𝑦1)

�𝑦̈𝑦12+𝑦̈𝑦22+(𝑦̈𝑦3+9.8)2�∗cos𝜙𝜙
 (4.4)

𝜃̇𝜃 =
(𝑦𝑦1cos𝑦𝑦4 − 𝑦̈𝑦1𝑦̇𝑦4sin𝑦𝑦4 + 𝑦𝑦2sin𝑦𝑦4 + 𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)(𝑦̈𝑦3 + 9.8) − (𝑦̈𝑦1cos𝑦𝑦4 + 𝑦̈𝑦2sin𝑦𝑦4)𝑦𝑦3

(𝑦̈𝑦3 + 9.8)2cos2𝜃𝜃

Through the above equation (4.4), (4.5) and (4.6), the state 𝑋𝑋(𝑡𝑡) can change our

choice of the flat outputs 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 and 𝜓𝜓.

Then, we verify that the quadrotor’s control inputs 𝑈𝑈(𝑡𝑡) change the flat outputs.

the parameterization of control inputs 𝑈𝑈(𝑡𝑡) are given by

- 23 -

𝑢𝑢1 = 𝑚𝑚(𝑔𝑔+𝑦̈𝑦3)
cos𝜙𝜙cos𝜃𝜃

𝑢𝑢2 = 𝐽𝐽𝑥𝑥𝑝̇𝑝 + 𝑞𝑞𝑞𝑞(−𝐽𝐽𝑦𝑦 + 𝐽𝐽𝑧𝑧) (4.5)

𝑢𝑢3 = 𝐽𝐽𝑦𝑦𝑞̇𝑞 + 𝑝𝑝𝑝𝑝(𝐽𝐽𝑥𝑥 − 𝐽𝐽𝑧𝑧)

𝑢𝑢4 = 𝐽𝐽𝑧𝑧𝑟̇𝑟 + 𝑝𝑝𝑝𝑝(−𝐽𝐽𝑥𝑥 + 𝐽𝐽𝑦𝑦)

where 𝑝̇𝑝, 𝑞̇𝑞 and 𝑟̇𝑟 are angular acceleration with respect to the body frame.

To convert 𝑝̇𝑝, 𝑞̇𝑞, 𝑟̇𝑟 to the flat outputs of our choice, we need to verify that the pa-

rameterization of 𝜙̈𝜙, 𝜃̈𝜃 in function of the flat outputs. They are given by

𝜙̈𝜙 =

⎝

⎜
⎜
⎛

(𝑦𝑦1sin𝑦𝑦4+𝑦̈𝑦1𝑦̇𝑦4cos𝑦𝑦4−𝑦𝑦2cos𝑦𝑦4+𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)��𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2�

−(𝑦̈𝑦1sin𝑦𝑦4−𝑦̈𝑦2cos𝑦𝑦4)�0.5 1

�𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2
�(2𝑦𝑦1𝑦̈𝑦1+2𝑦𝑦2𝑦̈𝑦2+2𝑦𝑦3𝑦̈𝑦3+19.6𝑦𝑦1)

⎠

⎟
⎟
⎞

′

�𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2�

−((𝑦𝑦1sin𝑦𝑦4+𝑦̈𝑦1𝑦̇𝑦4cos𝑦𝑦4−𝑦𝑦2cos𝑦𝑦4+𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)��𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2�

−(𝑦̈𝑦1sin𝑦𝑦4−𝑦̈𝑦2cos𝑦𝑦4)(0.5 1

�𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2
)(2𝑦𝑦1𝑦̈𝑦1+2𝑦𝑦2𝑦̈𝑦2+2𝑦𝑦3𝑦̈𝑦3+19.6𝑦𝑦1))�𝑦̈𝑦1

2+𝑦̈𝑦2
2+(𝑦̈𝑦3+9.8)2�

′

�𝑦̈𝑦1
2+𝑦̈𝑦2

2+(𝑦̈𝑦3+9.8)2�
2
∗cos𝜙𝜙

+ 𝜙̇𝜙2tan𝜙𝜙 (4.6)

𝜃̈𝜃 =

((𝑦𝑦3(𝑦𝑦1cos𝑦𝑦4 − 𝑦̈𝑦1𝑦̇𝑦4sin𝑦𝑦4 + 𝑦𝑦2sin𝑦𝑦4 + 𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4) + (𝑦̈𝑦3 + 9.8)(𝑦𝑦1cos𝑦𝑦4 − 𝑦̈𝑦1𝑦̇𝑦4sin𝑦𝑦4 + 𝑦𝑦2sin𝑦𝑦4 + 𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)′)
−((𝑦̈𝑦1cos𝑦𝑦4 + 𝑦̈𝑦2sin𝑦𝑦4)′𝑦𝑦3 + 𝑦𝑦3

(4)(𝑦̈𝑦1cos𝑦𝑦4 + 𝑦̈𝑦2sin𝑦𝑦4)))
(𝑦̈𝑦3 + 9.8)4cos2𝜃𝜃

+
−2𝑦𝑦3(𝑦̈𝑦3 + 9.8)((𝑦𝑦1cos𝑦𝑦4 − 𝑦̈𝑦1𝑦̇𝑦4sin𝑦𝑦4 + 𝑦𝑦2sin𝑦𝑦4 + 𝑦̈𝑦2𝑦̇𝑦4cos𝑦𝑦4)(𝑦̈𝑦3 + 9.8) − (𝑦̈𝑦1cos𝑦𝑦4 + 𝑦̈𝑦2sin𝑦𝑦4)𝑦𝑦3)

(𝑦̈𝑦3 + 9.8)4cos2𝜃𝜃

+2𝜃̇𝜃2tan𝜃𝜃

As a result, the quadrotor dynamics can be written in the function of flat outputs 𝑥𝑥1,

𝑥𝑥2, 𝑥𝑥3 and 𝜓𝜓.

4.2 Flat Output Trajectory Generation

Several methods can be used to design the smooth flat output trajectory generation in

the flat system. In this paper, the Bezier polynomial function [14] is considered. This

- 24 -

method is advantaged because of the main reason which is the coefficients of the pol-

ynomial can be easily calculated in function of the initial and the final conditions. A

general Bezier polynomial function is given by

𝑦𝑦 = 𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑡𝑡𝑛𝑛−1 + ⋯+ 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎0 (4.7)

where 𝑡𝑡 is time and 𝑎𝑎𝑖𝑖(𝑖𝑖 = 0,⋯ ,𝑛𝑛) are constant coefficients to be calculated in

function of the initial and final conditions.

The degree of Bezier polynomial function for flat output trajectory generation is 9th

order polynomial function because 10 conditions are used. Those are 5 initial flat out-

put conditions and 5 final flat output conditions to calculate the trajectory planning.

Flat output trajectories are given by

𝑦𝑦𝑖𝑖 = 𝑎𝑎9𝑡𝑡9 + 𝑎𝑎8𝑡𝑡8 + 𝑎𝑎7𝑡𝑡7 + ⋯+ 𝑎𝑎3𝑡𝑡3 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎1𝑡𝑡1 + 𝑎𝑎0 (i = 1,2,3,4) (4.8)

If you want to generate trajectory 𝑦𝑦1(0) = 0, 𝑦̇𝑦1(0) = 0, 𝑦̈𝑦1(0) = 0, 𝑦𝑦1(0) = 0,

𝑦𝑦1
(4)(0) = 0 and 𝑦𝑦1(4) = 1, 𝑦̇𝑦1(4) = 0, 𝑦̈𝑦1(4) = 0, 𝑦𝑦1(4) = 0, 𝑦𝑦1

(4)(4) = 0. It is

given by

𝑦𝑦1(𝑡𝑡) = 70(𝑡𝑡/4)9 − 315(𝑡𝑡/4)8 + 540(𝑡𝑡/4)7 − 420(𝑡𝑡/4)6 + 126(𝑡𝑡/4)5 (4.9)

Figure 4.1: An example of flat output trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

re
fe

re
nc

e
tra

je
ct

or
y

y1 trajectory

- 25 -

To prove feasible motion of quadrotor, we show the motion planning of quadrotor

state 𝑋𝑋(𝑡𝑡) and control input 𝑈𝑈(𝑡𝑡) using the example - Equation (4.9). Flat outputs

are same as Equation (4.9). It is illustrated at Figure 4.2.

Figure 4.2: Flat output trajectories.

At this moment, other states also are flat. They are illustrated at Figure 4.3 and Figure

4.4.

Figure 4.3: V trajectories (state).

- 26 -

Figure 4.4: 𝜙𝜙, 𝜃𝜃 and 𝛺𝛺 trajectories (state).

Control inputs are illustrated at Figure 4.5.

Figure 4.5: Force and torque trajectories (control input).

- 27 -

Chapter 5

Controller Design

In Chapter 3 and 4, we introduce dynamic model and flatness-based motion planning.

In this chapter, we focus on control design formulation. In Section 5.1, we describe

PID type position controller. In Section 5.2, we present flat output conversion for ref-

erence Euler angles. Finally, we describe force generator and attitude controller using

Computed Torque Method in Section 5.3 and 5.4 respectively.

For the quadrotor control, the overall structure of the quadrotor control [8] is illus-

trated in Figure 5.1.

Figure 5.1: The overall structure of the quadrotor control.

5.1 Position Controller

The PID type controller applied to a variety of applications. The PID type controller

has the advantages which are that parameter gains can adjust easily and it is very sim-

ple to design. We design the position controller using PID type controller.

We make the new control input 𝑢𝑢′ which replaces the reference accelerations vec-

tor 𝑣̇𝑣𝑟𝑟 because only the reference accelerations vector 𝑣̇𝑣𝑟𝑟 doesn’t overcome system

- 28 -

error. So we consider PID feedback of the position and linear velocity error. It is given

by

𝑢𝑢′ = 𝑘𝑘𝑃𝑃𝑃𝑃𝑒𝑒𝑥𝑥 + 𝑘𝑘𝐷𝐷𝐷𝐷𝑒̇𝑒𝑥𝑥 + 𝑘𝑘𝐼𝐼𝐼𝐼 ∫ 𝑒𝑒𝑥𝑥 (5.4)

where 𝑒𝑒𝑥𝑥 is position error, 𝑒̇𝑒𝑥𝑥 is velocity error.

Figure 5.2: The structure of the position controller for the quadrotor.

5.2 Flat Output Conversion

In this section, we introduce the flat output conversion. The reference accelerations

vector 𝑣̇𝑣𝑟𝑟 and the reference yaw angle vector 𝜓𝜓𝑟𝑟 are used to make reference Euler

angles and its derivative components 𝜂𝜂𝑟𝑟, 𝜂̇𝜂𝑟𝑟, 𝜂̈𝜂𝑟𝑟. This process can lead to the trans-

lational dynamics of the quadrotor. They are as follows

𝑣̇𝑣𝑟𝑟_1 = (cos𝜙𝜙sin𝜃𝜃cos𝜓𝜓𝑟𝑟 + sin𝜙𝜙sin𝜓𝜓𝑟𝑟)
𝑓𝑓
𝑚𝑚

 𝑣̇𝑣𝑟𝑟_2 = (cos𝜙𝜙sin𝜃𝜃sin𝜓𝜓𝑟𝑟 − sin𝜙𝜙cos𝜓𝜓𝑟𝑟) 𝑓𝑓
𝑚𝑚

 (5.5)

𝑣̇𝑣𝑟𝑟_3 = −𝑔𝑔 + cos𝜙𝜙cos𝜃𝜃
𝑓𝑓
𝑚𝑚

- 29 -

The reference roll angle vector 𝜙𝜙𝑟𝑟 and the reference pitch angle vector 𝜃𝜃𝑟𝑟 can be

redefined using the translational dynamics of the quadrotor which substitute 𝑣̇𝑣𝑟𝑟 ref-

erence accelerations vector and the yaw angle reference vector 𝜓𝜓𝑟𝑟. They are given by

equation (5.6)

𝜙𝜙𝑟𝑟 = sin−1(𝑣̇𝑣𝑟𝑟_1 sin𝜓𝜓𝑟𝑟−𝑣̇𝑣𝑟𝑟_2 cos𝜓𝜓𝑟𝑟

�𝑣̇𝑣𝑟𝑟_1
2+𝑣̇𝑣𝑟𝑟_2

2+(𝑣̇𝑣𝑟𝑟_3+9.8)2
) (5.6)

𝜃𝜃𝑟𝑟 = tan−1(
𝑣̇𝑣𝑟𝑟_1 cos𝜓𝜓𝑟𝑟 + 𝑣̇𝑣𝑟𝑟_2 sin𝜓𝜓𝑟𝑟

𝑣̇𝑣𝑟𝑟_3 + 9.8
)

And we make the Euler angle reference vector 𝜂𝜂𝑟𝑟 using equation (5.6) and yaw angle

reference vector 𝜓𝜓𝑟𝑟. It is given by

𝜂𝜂𝑟𝑟 = [𝜙𝜙𝑟𝑟 𝜃𝜃𝑟𝑟 𝜓𝜓𝑟𝑟]𝑇𝑇. (5.7)

5.3 Force Generator

Total force of the quadrotor expressed by the body frame can be redefined by transla-

tional z-axis dynamics of the quadrotor using the control input 𝑢𝑢3′ which replaces z-

axis acceleration vector 𝑣̇𝑣𝑟𝑟_3. Force generator takes only the new control input 𝑢𝑢3′ .

Because x and y-axis acceleration vectors 𝑣̇𝑣𝑟𝑟_1 , 𝑣̇𝑣𝑟𝑟_2 is sufficiently considered to

generate reference Euler angles which make desired torque so we don’t consider the

new control input 𝑢𝑢1′ , 𝑢𝑢2′ . And cos𝜙𝜙 and cos𝜃𝜃 terms are to linearize quadrotor al-

titude dynamics. Equation (5.8) represents force generator.

𝑓𝑓 = 𝑚𝑚(𝑢𝑢3
′ +𝑔𝑔

cos𝜙𝜙cos𝜃𝜃
) (5.8)

5.4 Attitude Controller by Computed Torque Method

- 30 -

In Chapter 2, we explain Computed Torque Method. This method is usually use robot

manipulator controller. However, quadrotor have roll, pitch and yaw non-linear man-

ner. And quadrotor is also rigid body. It is same as robot manipulator characteristics.

So its method is suitable to the quadrotor attitude control. Its method considered the

non-linear inner loop compensator and the outer feedback loop. The non-linear inner

loop compensator is the key role to approximate linear model using the non-linear

term feedback and calculate the torque. In this section, we explain quadrotor attitude

controller using Computed Torque Method.

The rotational dynamics of the quadrotor can change the Euler angle representation.

It is given by equation (5.9).

𝜏𝜏 = 𝐽𝐽𝐶𝐶−1𝜂̈𝜂 + 𝐽𝐽(𝐶𝐶−1)̇ 𝜂̇𝜂 + 𝐶𝐶−1𝜂̇𝜂 × (𝐽𝐽𝐶𝐶−1𝜂̇𝜂) (5.9)

where 𝐶𝐶−1 = �
1 0 −sin𝜃𝜃
0 cos𝜙𝜙 sin𝜙𝜙cos𝜃𝜃
0 −sin𝜙𝜙 cos𝜙𝜙cos𝜃𝜃

� and

(𝐶𝐶−1)̇ = �
0 0 −𝜃̇𝜃cos𝜃𝜃
0 −𝜙̇𝜙sin𝜙𝜙 𝜙̇𝜙cos𝜙𝜙cos𝜃𝜃 − 𝜃̇𝜃sin𝜙𝜙sin𝜃𝜃
0 −𝜙̇𝜙cos𝜙𝜙 −𝜙̇𝜙sin𝜙𝜙cos𝜃𝜃 − 𝜃̇𝜃cos𝜙𝜙sin𝜃𝜃

�.

To control quadrotor attitude, choose the control input 𝜏𝜏:

𝜏𝜏 = 𝛼𝛼𝜏𝜏′ + 𝛽𝛽 (5.10)

where 𝛼𝛼 = 𝐽𝐽𝐶𝐶−1, 𝛽𝛽 = 𝐽𝐽(𝐶𝐶−1)̇ 𝜂̇𝜂 + 𝐶𝐶−1𝜂̇𝜂 × (𝐽𝐽𝐶𝐶−1𝜂̇𝜂).

And we introduce new control input 𝜏𝜏′:

𝜏𝜏′ = 𝜂̈𝜂𝑟𝑟 + 𝑘𝑘𝐷𝐷𝑒̇𝑒𝜂𝜂 + 𝑘𝑘𝑃𝑃𝑒𝑒𝜂𝜂 (5.11)

where 𝑒𝑒𝜂𝜂 is Euler angle error and 𝑒̇𝑒𝜂𝜂 is Euler angle velocity error.

- 31 -

Then, closed loop rotational dynamics of the quadrotor is characterized by second

order error dynamics.

𝑒̈𝑒𝜂𝜂 + 𝑘𝑘𝐷𝐷𝑒̇𝑒𝜂𝜂 + 𝑘𝑘𝑃𝑃𝑒𝑒𝜂𝜂 = 0 (5.12)

Convergence of the tracking error to zero is guaranteed [12] using equation (5.12).

Figure 5.3 is described by the attitude controller via Computed Torque Method.

Figure 5.3: The structure of the attitude controller for the quadrotor.

- 32 -

Chapter 6

Simulations

In this chapter, we develop the quadrotor simulator the using previous chapters. In

Section 6.1, we explain simulation parameter using simulator. Then we verify tracking

performance and quadrotor system stability according to differential flatness-based

motion planning. Finally, we introduce 3D visualization using Simulink 3D animation.

6.1 Simulation Parameters

Because quadrotor platforms are expensive and friable so simulation validations are

important before experiment validations. And real model parameters are necessary.

For the validation in the quadrotor simulation, The Ascending Technology Humming-

bird [15] is considered. Its specification [8] is illustrated in Table 1.

Parameter mark Value Unit

𝑚𝑚 0.6 Kg

𝑔𝑔 9.8 𝑚𝑚/𝑠𝑠2

𝐽𝐽 diag(3.9 × 10−3,4.4 × 10−3,4.9 × 10−3) 𝑚𝑚2kg

𝑘𝑘𝐹𝐹 6.11 × 10−8 𝑁𝑁
𝑟𝑟𝑟𝑟𝑟𝑟2�

𝑘𝑘𝑚𝑚 1.5 × 10−9 𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟𝑟𝑟2�

𝑙𝑙 0.17 𝑚𝑚

Table 1. Parameter specification of the simulation (Hummingbird).

- 33 -

6.2 Simulation Results

Quadrotor can be used in disaster areas, surveillance and so on. For this reason, quad-

rotor is considered to have hovering capability and trajectory tracking.

To show hovering capability, we firstly verify quadrotor stability of one point tra-

jectory tracking control according to differential flatness-based motion planning. And

then, we verify trajectory tracking control performance using circle trajectory control.

We consider MATLAB simulation.

Figure 6.1: Results of one point tracking using motion planning(flat outputs).

Figure 6.1 is result of flat outputs of one point tracking using motion planning.

Each flat output references are 𝑦𝑦r_1 = 𝑦𝑦r_2 = 𝑦𝑦r_3 are 1m and 𝑦𝑦r_4 is 1rad. Compare

reference and real value, one point trajectory references considering motion planning

show stable quadrotor dynamics.

- 34 -

Figure 6.2: Results of one point tracking using motion planning(attitude).

Figure 6.2 is result of angles of one point tracking using motion planning. Compare

reference and real value, attitude trajectory references considering motion planning

also show stable quadrotor dynamics.

Figure 6.3: Result of circle trajectory tracking.

Figure 6.3 is result of flat outputs of circle trajectory tracking control. Each flat output

reference radius is 1m. Circle trajectory references considering motion planning also

show stable quadrotor dynamics.

-1.5 -1 -0.5 0 0.5 1 1.5-2.5

-2

-1.5

-1

-0.5

0

0.5

x(m)

y(
m

)

Circle trajectory

reference
actual position

- 35 -

 6.3 3D Visualization

To validate the stability of the quadrotor, it is very important tool to visualize dynamic

system behavior. This validation is possible thanks to blocks which called Simulink

3D Animation [16]. Furthermore, the 3D visualization allows to analyze the position

and attitude of the quadrotor. The 3D quadrotor models are represented for the real

trajectory results. Figure 6.3 shows 3D quadrotor model using Virtual Reality Model-

ing Language (VRML) which is proposed script language for 3D virtual environment

in internet interface. Actually, there are 3D model development tools such as Solid-

works, CAD, Catia and so on. We consider VRML for this thesis simulation.

An explicative video is linked here: https://youtu.be/By57LXeyO5M and

https://www.youtube.com/watch?v=dA5BxAGpqbc.

Figure 6.3: 3D quadrotor model using VRML

https://youtu.be/By57LXeyO5M
https://www.youtube.com/watch?v=dA5BxAGpqbc

- 36 -

Chapter 7

Conclusion and Future Work

In this thesis, the basics of quadrotor control are presented including reference

frames, rotation matrix, kinematics and dynamics by Euler-Newton Equation. Then,

differential flatness-based motion planning is considered for reference trajectory

generation. Finally, position and attitude control of quadrotor dynamics are consid-

ered. PID type controller and Computed Torque Method are designed for position

and attitude controls. The performance of the controller is validated using

MATLAB simulations. The results show a stable dynamics despite the changes in

roll, pitch and yaw motion in nonlinear manner.

The actual experimental validations are required because modeling error is pre-

sented in a variety of reasons. But this thesis considers only simulation validations

so experimental validation of the actual quadrotor should be essential.

And disturbance is considered because of error of measurement and system en-

vironment variables. Disturbance acts on the control system in the form of addi-

tional input which is applied to the control input. The influence of disturbance must

be analyzed because the influence of disturbance generates a system error so affect

the stability of system.

- 37 -

Appendix

A. Simulator Code

For thesis validation, Results are validated using MATLAB simulations. MATLAB

support MATLAB function block for simulations. In this appendix, we introduce 4

MATLAB function block: Flat output conversion, Attitude controller, Force generator

and quadrotor dynamics.

Figure A.1: Simulink block diagram

A.1 Flat Output Conversion

function [eta_ref, p_ddot_ref] = fcn(heading_ref, p_ddot_i_ref)

psi_ref = heading_ref(1,1);

 x_ddot_ref = p_ddot_i_ref(1,1);

y_ddot_ref = p_ddot_i_ref(2,1);

- 38 -

z_ddot_ref = p_ddot_i_ref(3,1);

d =

sqrt(x_ddot_ref*x_ddot_ref+y_ddot_ref*y_ddot_ref+(z_ddot_ref+9.81)*(

z_ddot_ref+9.81));

phi_ref = asin((x_ddot_ref*sin(psi_ref) -

y_ddot_ref*cos(psi_ref))/(d));

theta_ref = atan((x_ddot_ref*cos(psi_ref) +

y_ddot_ref*sin(psi_ref))/(z_ddot_ref+9.81));

 min_ang = -pi/2;

max_ang = pi/2;

if (phi_ref < min_ang), phi_ref = min_ang; end

if (phi_ref > max_ang), phi_ref = max_ang; end

if (theta_ref < min_ang), theta_ref = min_ang; end

if (theta_ref > max_ang), theta_ref = max_ang; end

eta_ref = [phi_ref; theta_ref; psi_ref];

p_ddot_ref = [x_ddot_ref;y_ddot_ref;z_ddot_ref];

A.2 Attitude Controller

function t_d = fcn(eta, O, eta_ddot_ref)

global J;

sphi = sin(eta(1,1));

cphi = cos(eta(1,1));

- 39 -

stht = sin(eta(2,1));

ctht = cos(eta(2,1));

spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));

C = [1 0 -stht;

 0 cphi sphi*ctht;

 0 -sphi cphi*ctht];

eta_dot = inv(C)*O;

phi_dot = eta_dot(1,1);

theta_dot = eta_dot(2,1);

psi_dot = eta_dot(3,1);

sphi = sin(eta(1,1));

cphi = cos(eta(1,1));

stht = sin(eta(2,1));

ctht = cos(eta(2,1));

spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));

C_dot = [0 0 -theta_dot*ctht;

 0 -phi_dot*sphi phi_dot*cphi*ctht-theta_dot*sphi*stht;

 0 -phi_dot*cphi -phi_dot*sphi*ctht-theta_dot*cphi*stht];

O_hat = [0 -O(3,1) O(2,1);

 O(3,1) 0 -O(1,1);

 -O(2,1) O(1,1) 0];

t_d = J*C*eta_ddot_ref + O_hat*J*O + J*C_dot*eta_dot;

- 40 -

A.3 Force Generator

function f_d = fcn(eta, p_ddot_ref)

global m;

sphi = sin(eta(1,1));

cphi = cos(eta(1,1));

stht = sin(eta(2,1));

ctht = cos(eta(2,1));

spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));

u = m*[0; 0; (p_ddot_ref(3,1)+ 9.81/(cphi*ctht))];

f_d = u(3,1);

A.4 Quadrotor Dynamics

function [O_dot, p_ddot, eta_dot] = fcn(O, eta, f_d, t_d)

global Kf Km L m g J; % variables

sphi = sin(eta(1,1));

cphi = cos(eta(1,1));

stht = sin(eta(2,1));

ctht = cos(eta(2,1));

spsi = sin(eta(3,1));

cpsi = cos(eta(3,1));

- 41 -

R = [cpsi*ctht cpsi*stht*sphi-spsi*cphi cpsi*stht*cphi+spsi*sphi;

 spsi*ctht spsi*stht*sphi+cpsi*cphi spsi*stht*cphi-cpsi*sphi;

 -stht ctht*sphi ctht*cphi]; % rotation matrix

C = [1 0 -stht;

 0 cphi sphi*ctht;

 0 -sphi cphi*ctht];

O_hat = [0 -O(3,1) O(2,1);

 O(3,1) 0 -O(1,1);

 -O(2,1) O(1,1) 0]; % hatmap for omega

T = [Kf Kf Kf Kf;

 0 L*Kf 0 -L*Kf;

 L*Kf 0 -L*Kf 0;

 -Km Km -Km Km];

u = [f_d(1,1); t_d(1,1); t_d(2,1); t_d(3,1)]; % total force and

torque

w = inv(T)*u; % each motor angular velocity^2

F1 = Kf*w(1,1); % front motor force

F2 = Kf*w(2,1); % left motor force

F3 = Kf*w(3,1); % back motor force

F4 = Kf*w(4,1); % right motor force

t1 = Km*w(1,1); % front motor torque

t2 = Km*w(2,1); % left motor torque

t3 = Km*w(3,1); % back motor torque

t4 = Km*w(4,1); % right motor torque

- 42 -

F = [0; 0; F1+F2+F3+F4]; % total force with respect to body fixed

frame

T = [L*(F2-F4); L*(F1-F3); -t1+t2-t3+t4]; % total torque with re-

spect to body fixed frame

p_ddot = g + R*F/m; % translational dynamics

O_dot = inv(J)*(T -O_hat*J*O); % rotational dynamics

eta_dot = inv(C)*O; % rotational kinematics

- 43 -

Reference

[1] Bouabdallah, S., Noth, A., Siegwart, R. (2004). “PID vs LQ control Techniques Applied to an In-

door Micro Quadrotor” IEEE/RSJ International Conference on Intelligent Robots and Systems 2004,

Sendal, Japan, pp. 2451-2456.

[2] Bouabdallah, S., Siegwart, R. (2005). “Backstepping and Sliding-mode Techniques Applied to an

Indoor Micro Quadrotor” IEEE International Conference on Robotics and Automation 2005, Barcelona,

Spain, pp. 2247-2252.

[3] Changsu, H., Zhiyuan, Z., Francis, C., Dongjun, L. (2014). “Passivity-based adaptive backstepping

control of quadrotor-type UAVs” Robotics and Autonomous Systems, pp.1305-1315.

[4] Taeyoung, L. (2015). “Global Exponetial Attitude Tracking Controls on SO(3)” IEEE Transactions

on Automatic Control, pp.1824-1829.

[5] Tse-Huai, W., Taeyoung, L. (2015). “Angular Velocity Observer for Velocity-Free Attitude Tracking

Control on SO(3)” European Control Conference ,Linz, Austria, pp.2837-2842.

[6] Murray, R. (1996). “Trajectory Generation for A Towed Cable System using Differential Flatness”

IFAC World Congress, San Francisco, United States of America.

[7] Justin, T., Loianno, G., Polin, J., Sreenath, K., Kumar, V. (2014). “Toward Autonomous Avian-

Inspired Grasping for Micro Aerial Vehicles” Bioinspiration and Biomimetics, pp. 25010.

[8] Mellinger, D., Michael, N., Kumar, V. (2012). “Trajectory generation and control for precise ag-

gressive maneuvers with quadrotors” The International Journal of Robotics Research, pp.664-674.

[9] Mellinger, D., Kushleyev, A., Kumar, V. (2012). “Mixed-Integer Quadratic Program Trajectory

Generation for Heterogeneous Quadrotor Teams” IEEE International Conference on Robotics and Au-

tomation, Minnesota, United States of America, pp.477-483

[10] Turpin, M., Michael, N., Kumar, V. (2014). “Capt: Concurrent assignment and planning of trajec-

tories for multiple robots” The International Journal of Robotics Research, pp.98-112

[11] Rechter, C., Bry, A., Roy, N. (2013). “Polynomial Trajectory Planning for Aggressive

Quadrotor Flight in Dense Indoor Environments” In Proceedings of the International Symposium of

Robotics Research (ISRR 2013).

[12] Craig, J. (2005). Introduction to Robotics Mechanics and Control, Pearson Education International,

402 pages.

[13] Beard, R. (2008). “Quadrotor Dynamics and Control” Brigham Young University, Utah, United

- 44 -

States of America, 47 pages

[14] Levine, J. (2009). Analysis and Control of Nonlinear Systems – A Flatness Based Approach,

Springer, 331 pages.

[15] “Ascending Technologies, GmbH,” http://www.asctec.de.

[16] “Simulink 3D Animation User’s Guide” http://www.mathworks.co.kr.

- 45 -

요 약 문

미분 평탄성 및 토크 계산 제어를 이용한 쿼드로터 궤적 추종

무인비행기(UAV)는 정찰, 목표 추적, 환경 및 재난 모니터링 그리고 온라인 쇼핑 택배

배달까지 광범위한 곳에서 활용되고 있습니다. 이러한 활용을 위해서는, 무인비행기 위치

및 자세를 제어하는 것과 무인비행기의 동작 계획이 중요합니다. 하지만 UAV 위치 및

자세 제어기 설계에서 가장 어려운 부분은 롤, 피치 그리고 요에 관한 비선형 회전운동이

쿼드로터 위치 역학과 커플링 되어있다는 점입니다. 쿼드로터의 동작 계획 또한

중요합니다. 쿼드로터의 실현 가능한 동작과 모순된 궤적 계획은 제어기 설계를 어렵게

만들며, 좋지 않는 추종 성능을 야기합니다. 이 논문에서는 쿼드로터의 자세와 위치 동작

궤적 추종 제어를 고려했습니다. 첫 번째로, 쿼드로터 동역학과 관련된 기준 좌표계, 회전

행렬, 힘과 모멘트, 뉴턴 오일러 방식으로 기술하는 기구학 및 동역학에 대해

기술하였습니다. 다음으로, 쿼드로터의 기준 궤적 생성을 위해서 미분 평탄성을 기반으로

한 동작 계획에 대해서 설명하였습니다. 마지막으로, 쿼드로터 위치 및 자세 제어를 위한

PID 위치 제어기 및 토크 계산법을 이용한 자세 제어기를 설계하였습니다. 논문 결과는

MATLAB 시뮬레이션으로 검증하였습니다.

핵심어: 미분 평탄성, 동작 계획, 궤적 추종 제어, 쿼드로터, 무인비행기

	I. Introduction
	1.1 Previous work
	1.2 Motivation
	1.2 Thesis Structure

	II. Background
	2.1 Computed Torque Method

	III. Quadrotor Model
	3.1 Model Assumptions
	3.2 Reference Frames
	3.2.1 The Inertial Frame
	3.2.2 The Vehicle Frame
	3.2.3 The Vehicle-1 Frame
	3.2.4 The Vehicle-2 Frame
	3.2.5 The Body Frame

	3.3 Rotation Matrix
	3.4 Quadrotor Kinematics & Dynamics
	3.4.1 Kinematic Model
	3.4.2 Dynamic Model
	3.4.3 Force and Moments
	3.4.4 State Space Representation

	IV. Differential Flatness-Based Motion Planning
	4.1 Differential Flatness
	4.2 Flat Output Trajectory Generation

	V. Controller Design
	5.1 Position Controller
	5.2 Flat Output Conversion
	5.3 Force Generator
	5.4 Attitude Controller by Computed Torque Method

	VI. Simulations
	6.1 Simulation Parameters
	6.2 Simulation Results
	6.3 3D Visualization

	VII. Conclusion and Future Work
	Appendix A. Simulator Code
	A.1 Flat Output Conversion
	A.2 Attitude Controller
	A.3 Force Generator
	A.4 Quadrotor Dynamics

<startpage>13
I. Introduction 1
 1.1 Previous work 2
 1.2 Motivation 3
 1.2 Thesis Structure 3
II. Background 5
 2.1 Computed Torque Method 5
III. Quadrotor Model 13
 3.1 Model Assumptions 13
 3.2 Reference Frames 13
 3.2.1 The Inertial Frame 14
 3.2.2 The Vehicle Frame 14
 3.2.3 The Vehicle-1 Frame 14
 3.2.4 The Vehicle-2 Frame 15
 3.2.5 The Body Frame 16
 3.3 Rotation Matrix 16
 3.4 Quadrotor Kinematics & Dynamics 16
 3.4.1 Kinematic Model 17
 3.4.2 Dynamic Model 18
 3.4.3 Force and Moments 19
 3.4.4 State Space Representation 19
IV. Differential Flatness-Based Motion Planning 21
 4.1 Differential Flatness 21
 4.2 Flat Output Trajectory Generation 23
V. Controller Design 27
 5.1 Position Controller 27
 5.2 Flat Output Conversion 28
 5.3 Force Generator 29
 5.4 Attitude Controller by Computed Torque Method 29
VI. Simulations 32
 6.1 Simulation Parameters 32
 6.2 Simulation Results 33
 6.3 3D Visualization 35
VII. Conclusion and Future Work 36
Appendix A. Simulator Code 37
 A.1 Flat Output Conversion 37
 A.2 Attitude Controller 38
 A.3 Force Generator 40
 A.4 Quadrotor Dynamics 40
</body>

