Cited 0 time in webofscience Cited 3 time in scopus

Similarity-Based LSTM Architecture for Energy-Efficient Edge-Level Speech Recognition

Title
Similarity-Based LSTM Architecture for Energy-Efficient Edge-Level Speech Recognition
Authors
Jo, JunseoKung, JaehaLee, SungguLee, Youngjoo
DGIST Authors
Kung, Jaeha
Issue Date
2019-07-30
Citation
IEEE International Symposium on Low-Power Electronics and Design
Type
Conference
ISBN
9781728129549
ISSN
1533-4678
Abstract
Targeting the resource-limited edge devices, we present a novel processing architecture of long short-term memory (LSTM) networks for low-power speech recognition. The proposed scheme newly defines the similarity score between two inputs of adjacent LSTM cells, and then the processing mode of the current LSTM cell is dynamically determined to reduce the energy while providing the accurate recognition. If the similarity is high, more precisely, the current cell is disabled and the outputs are directly copied from the prior vectors, totally eliminating complex LSTM operations. To maximize the skipping ratio without degrading the accuracy, for the first time, we analyze the effects of skipping the consecutive cells and set the upper limit of the number of consecutive skips. When two adjacent inputs are weakly similar, in addition, we modify the concept of the previous delta-computing, which approximately activate the LSTM cell with low computational resolution, further reducing the energy consumption. Compared to the previous state-of-the-art solutions, as a result, the proposed LSTM architecture remarkably saves the energy consumed for the accurate speech recognition, which is suitable to the resource-limited embedded edges. © 2019 IEEE.
URI
http://hdl.handle.net/20.500.11750/10872
DOI
10.1109/ISLPED.2019.8824862
Publisher
Institute of Electrical and Electronics Engineers Inc.
Related Researcher
  • Author Kung, Jaeha Intelligent Digital Systems Lab
  • Research Interests 딥러닝, 가속하드웨어, 저전력 하드웨어, 고성능 시스템
Files:
There are no files associated with this item.
Collection:
Department of Information and Communication EngineeringIntelligent Digital Systems Lab2. Conference Papers


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE