Cited 0 time in webofscience Cited 0 time in scopus

Force Control of Series Elastic Actuators-Driven Parallel Robot

Title
Force Control of Series Elastic Actuators-Driven Parallel Robot
Authors
Lee, HyunwookKwak, SuhuiOh, Sehoon
DGIST Authors
Oh, Sehoon
Issue Date
2018-05
Citation
2018 IEEE International Conference on Robotics and Automation, ICRA 2018, 5401-5406
Type
Conference
ISBN
9781538630815
ISSN
1050-4729
Abstract
This paper proposes a novel parallel robot - Virtual Ground Robot (VGR) - that is driven by three Series Elastic Actuators (SEAs) to interact with a human. The proposed Virtual Ground Robot provides a virtual ground on which a human can stand on and interact in three directions: the pitch, the roll and the height directions. The most significant features of the proposed VGR are that 1) it is driven by RFSEAs (Reaction Force-sensing Series Elastic Actuator), and thus it can provide precise forces and torques, 2) the size of the VGR is small enough for a human to stand on with ease, and 3) it can generate torque/force large to support a weight of a human. Taking advantage of RFSEAs utilized in the proposed VGR, Spatial Force control algorithm is proposed in this paper. In order to design this controller, the motions of VGR are defined in the task space, the joint space and the RFSEA level. Based on the Kinematics, force control of VGR in the task level, which is named Spatial Force Control is designed and verified using experiments. © 2018 IEEE.
URI
http://hdl.handle.net/20.500.11750/9705
DOI
10.1109/ICRA.2018.8460768
Publisher
Institute of Electrical and Electronics Engineers Inc.
Related Researcher
  • Author Oh, Sehoon MCL(Motion Control Lab)
  • Research Interests Research on Human-friendly motion control; Development of human assistance;rehabilitation system; Design of robotic system based on human musculoskeletal system; Analysis of human walking dynamics and its application to robotics; 친인간적인 운동제어 설계연구; 인간 보조;재활 시스템의 설계 및 개발연구; 인간 근골격계에 기초한 로봇기구 개발연구; 보행운동 분석과 모델 및 로봇기구에의 응용
Files:
There are no files associated with this item.
Collection:
Department of Robotics EngineeringMCL(Motion Control Lab)2. Conference Papers


qrcode mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE