Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Park, Joonam -
dc.contributor.author Bae, Kyung Taek -
dc.contributor.author Kim, Dohwan -
dc.contributor.author Jeong, Woo Young -
dc.contributor.author Nam, Jieun -
dc.contributor.author Lee, Myeong Ju -
dc.contributor.author Shin, Dong Ok -
dc.contributor.author Lee, Young-Gi -
dc.contributor.author Lee, Hongkyung -
dc.contributor.author Lee, Kang Taek -
dc.contributor.author Lee, Yong Min -
dc.date.accessioned 2021-01-22T07:16:01Z -
dc.date.available 2021-01-22T07:16:01Z -
dc.date.created 2020-10-29 -
dc.date.issued 2021-01 -
dc.identifier.issn 2211-2855 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12703 -
dc.description.abstract Solid oxides are attractive electrolyte materials for all-solid-state lithium batteries (ASSLBs) owing to their high stability and pure Li-ion conductivity. Nevertheless, the electrochemical performance of ASSLBs employing solid oxide-based electrolytes cannot compete with ASSLBs with sulfide or polymeric electrolytes due to poor interfacial contact and high boundary resistance between the active materials and solid oxide electrolytes. To overcome this hurdle, elaborate microstructural analysis of the interface of the active material/solid oxide electrolyte in ASSLBs is essentially required since the interfacial contact area dominantly acts as the ion pathway and the electrochemical reaction site in the electrode. Although recent attempts on interfacial structure analysis of ASSLBs have provided simple 2D or semi-3D microstructural features, the results have not yielded deep insights. Herein, we investigated the interfacial defects in an all-solid-state electrode with a solid oxide electrolyte via a 3D digital twin technology combining 3D structural quantification and physico-electrochemical simulations to unravel the intrinsic limitations of solid oxide electrolytes. The in-depth results can be used to design materials and optimize electrode design parameters for ASSLBs. © 2020 Elsevier Ltd -
dc.language English -
dc.publisher Elsevier -
dc.title Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3D digital twin structural analysis -
dc.type Article -
dc.identifier.doi 10.1016/j.nanoen.2020.105456 -
dc.identifier.scopusid 2-s2.0-85092608968 -
dc.identifier.bibliographicCitation Nano Energy, v.79 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Solid oxide electrolyte -
dc.subject.keywordAuthor All-solid-state lithium batteries -
dc.subject.keywordAuthor Interfacial contact -
dc.subject.keywordAuthor Digital twin -
dc.subject.keywordPlus Microstructural features -
dc.subject.keywordPlus Polymeric electrolytes -
dc.subject.keywordPlus Solid oxide electrolytes -
dc.subject.keywordPlus Solid electrolytes -
dc.subject.keywordPlus Digital twin -
dc.subject.keywordPlus Electrochemical electrodes -
dc.subject.keywordPlus Lithium-ion batteries -
dc.subject.keywordPlus Polyelectrolytes -
dc.subject.keywordPlus Solid-State Batteries -
dc.subject.keywordPlus Sulfur compounds -
dc.subject.keywordPlus All-solid-state lithium battery -
dc.subject.keywordPlus Electrochemical performance -
dc.subject.keywordPlus Electrochemical reactions -
dc.subject.keywordPlus Electrochemical simulation -
dc.subject.keywordPlus Microstructural analysis -
dc.citation.title Nano Energy -
dc.citation.volume 79 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE