Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jung, Kyu-Nam ko
dc.contributor.author Choi, Jae-Yong ko
dc.contributor.author Shin, Hyun-Seop ko
dc.contributor.author Huu, Ha Tran ko
dc.contributor.author Im, Won Bin ko
dc.contributor.author Lee, Jong-Won ko
dc.date.accessioned 2021-01-22T07:34:03Z -
dc.date.available 2021-01-22T07:34:03Z -
dc.date.created 2020-07-30 -
dc.date.issued 2020-08 -
dc.identifier.citation Solid State Sciences, v.106, pp.106334 -
dc.identifier.issn 1293-2558 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12801 -
dc.description.abstract O3-type Na[Ni1/3Fe1/3Mn1/3]O2 (NaNFM) is considered as a promising cathode material for sodium-ion batteries; however, its poor cycling stability is still a concern. In this study, we discuss the structural, surface and electrochemical properties of Mg-doped NaMgx[Ni1/3Fe1/3Mn1/3]1–xO2 materials and their enhanced cycling performance. The variations of the lattice parameters by substitution of Mg ion and its uniform distribution on the particles are confirmed using X-ray diffraction and transmission electron microscopy. The optimized NaMg0.05[Ni1/3Fe1/3Mn1/3]0.95O2 delivers a discharge capacity of ~120 mAh g−1 and has a diffusion coefficient of Na ranging from 6.5 × 10−13 to 2.7 × 10−10 cm2 s−1. In particular, it shows a relatively high discharge capacity of 42 mAh g−1 even at a high current density of 1200 mA g−1 and exhibits considerably enhanced cycling stability (77% capacity retention after 50 cycles), compared with that of the undoped NaNFM (40%). Based on structural and electrochemical analyses, it is suggested that Mg doping can effectively suppress the irreversible structural degradation and induce more reversible phase transitions; this results in a more stable cycling performance of the Mg-doped NaNFM than that of undoped NaNFM. © 2020 Elsevier Masson SAS -
dc.language English -
dc.publisher Elsevier Masson SAS -
dc.title Mg-doped Na[Ni1/3Fe1/3Mn1/3]O-2 with enhanced cycle stability as a cathode material for sodium-ion batteries -
dc.type Article -
dc.identifier.doi 10.1016/j.solidstatesciences.2020.106334 -
dc.identifier.wosid 000591261700010 -
dc.identifier.scopusid 2-s2.0-85087065987 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Jung, Kyu-Nam -
dc.contributor.nonIdAuthor Choi, Jae-Yong -
dc.contributor.nonIdAuthor Shin, Hyun-Seop -
dc.contributor.nonIdAuthor Huu, Ha Tran -
dc.contributor.nonIdAuthor Im, Won Bin -
dc.identifier.citationVolume 106 -
dc.identifier.citationStartPage 106334 -
dc.identifier.citationTitle Solid State Sciences -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor Sodium-ion battery -
dc.subject.keywordAuthor Cathode -
dc.subject.keywordAuthor Layered oxide -
dc.subject.keywordAuthor Mg doping -
dc.subject.keywordAuthor Electrochemistry -
dc.subject.keywordPlus HYBRID STRUCTURES -
dc.subject.keywordPlus RATE PERFORMANCE -
dc.subject.keywordPlus ELECTRODE -
dc.subject.keywordPlus O3-TYPE -
dc.subject.keywordPlus PHASE -
dc.subject.keywordPlus SUBSTITUTION -
dc.contributor.affiliatedAuthor Lee, Jong-Won -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Laboratory for Electrochemical Energy Materials and Interfaces 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE