Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Choi, Hong Soo -
dc.contributor.author Kim, Jin Hyuk -
dc.date.accessioned 2017-05-10T08:50:20Z -
dc.date.available 2016-05-18T00:00:00Z -
dc.date.issued 2014 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002262540 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1348 -
dc.description.abstract The micro mixers are essential to mix the fluids in lab-on-a-chips which analyze the biological antigen-antibody reactions or chemical reactions. The fluids flowing in lab-on-a-chips have very low Reynolds number which is under 100. Fluids having a low Reynolds number are mainly depend on diffusion mechanism to mix when flowing in a micro channel. Therefore, the mixers using the diffusion mechanism need very long channel length and narrow channel width for efficient mixing. However, these kind of passive mixers using the diffusion mechanism have limitations in their sample size caused by the long channel length. Thus, researchers have studied to overcome the limitations of passive mixer to achieve good mixing performance in limited device size. One way to achieve this goal is generating chaotic advection in the microfluidic system.
In this thesis, fabrication of magnetically rotating active micromixer was studied and the mixing performance was evaluated. The rotating motion is efficient to increase the contract area between the fluids and the rotor which is spun by external rotating magnetic field. The rotating magnetic field initiates the rotational movement of the rotor by generating magnetic torque. The rotor was fabricated by electroplating using a magnetic material which is Nickel-Cobalt alloy to enhance the magnetic torque. In addition, the micro fluidic channel was designed in simple Y-shape with two inlets and one outlet to evaluate the mixing performance. The different color dyed fluids are injected at each inlet and the fluids are mixed at the mixing chamber.
The experimental setup except the micromixer consists of the three parts; syringe pumps, a high speed camera, and a rotating magnet connected with a DC motor. The motor generates the rotational field and the rotational speed can be controlled by changing RPM of the motor. The syringe pumps were used to inject and extract the fluids to the inlets and from the outlet, respectively. The mixing performance of the micromixer was evaluated by captured images using the high speed camera. The mixed fluids were analyzed to obtain the intensity of each pixel by converting the image into gray scale. The mixing performances are expressed by using standard deviation and normalized pixel intensity.
The mixing performance was evaluated with various conditions. The flow rate was varied from 10 L/hr to 500 L/hr, and the used voltages of the motor were 6 V and 8 V. Reynolds numbers were calculated for each flow rate that are 0.064 and 0.0013 for 500 L/hr and 10 L/hr, respectively. If the standard deviation of color index with gray scale is zero, the mixing performance is defined to be 100%. The highest mixing performance was 90 percent with Reynolds number of 0.01.
Different mixing performances along with the different rotor shapes were investigated with a constant voltage, 6V, into the motor. The mixing performances of the Z-shaped rotor and I-shaped were varied from 90 to 77 percent and 83 to 65 percent for 100 L/hr and 500 L/hr, respectively. Thus, the Z-shaped rotor showed better performance around 10% than the I-shaped rotor. However, when applying 8 V into the motor, the mixing performances were not much difference with the two different rotor shapes. For the Z-shaped rotor, the mixing performance was nearly saturated at 6 V so, when applying 8 V into motor, the mixing performance was barely changed. On the contrary, the I-shaped rotor was not reached at the saturated status at 6 V. Thus, the mixing performance of the I-shaped rotor was increased until 8 V and saturated at this condition. For this reason, when comparing the mixing performance of the Z-shaped and I-shaped rotors, the difference of each rotor was small when applying 8 V into the motor. ⓒ 2014 DGIST
-
dc.description.tableofcontents 1. INTRODUCTION 1 --
1.1 Background 1 --
1.2 Necessity of micromixer 3 --
1.3 Trend of related research 5 --
1.3.1 Passive type micromixer 6 --
1.3.2 Active type micromixer 7 --
1.4 Objective of research 8 --
2. DESIGN AND FABRICATION 9 --
2.1 Design 9 --
2.1.1 Micro rotors 9 --
2.1.2 Micro fluidic channel 10 --
2.2 Fabrication Process 11 --
2.2.1 Fabrication process for micro rotors 11 --
2.2.2 Fabrication process for micro fluidic channel 13 --
2.2.3 Assemble the micro rotor and micro fluidic channel 15 --
3. EXPERIMENT AND ANALYSIS 18 --
3.1 Experimental setup 18 --
3.2 Image analysis to evaluate the mixing performance 22 --
4. RESULTS AND DISCUSSIONS 30 --
4.1 Experimental results 30 --
4.2 Discussions 39 --
5. CONCLUSIONS 41 --
REFERENCES 43
-
dc.format.extent 46 -
dc.language eng -
dc.publisher DGIST -
dc.subject Magnetic rotor -
dc.subject Micromixer -
dc.subject Magnetic actuation -
dc.subject Microfluidic channel -
dc.subject Image analysis -
dc.subject 마이크로 플루이딕 -
dc.subject 자기장 혼합기 -
dc.subject 미세 혼합기 -
dc.subject 자기장 엑츄에이션 -
dc.subject 이미지 해석 -
dc.title Fabrication of Magnetically Rotating Active Micromixer and Evaluation of Mixing Performance -
dc.title.alternative 회전 자기장 기반의 능동형 마이크로 믹서의 제작과 성능 평가 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2262540 -
dc.description.alternativeAbstract 레이놀즈 수 낮은 유체가 흐르는 마이크로 플루이딕 칩에서 서로 다른 유체를 혼합하기 위한 믹서는 필수적이다. 낮은 레이놀즈 수를 갖는 유체를 혼합하기 위해서는 확산에 의존해야 하는데, 확산이 잘 일어나는 조건은 채널의 폭이 좁고, 채널의 길이가 길어야 한다. 하지만 마이크로 플루이딕 칩은 크기의 제한이 있어 충분한 확산이 일어나기 위한 충분한 길이를 칩내에 형상화하기에 어려움이 있다. 이를 극복하기 위해 채널을 3 차원 구조로 변화시켜 확산거리를 짧게 만든다거나, 혼돈 이류를 만드는 연구가 활발히 진행되고 있다.
하지만 보다 뛰어난 혼합성능을 필요로 하는 분야에 사용될 것을 기대하며 외부로부터 얻은 에너지를 혼합하는데 사용하는 능동형 믹서를 설계하였다. 제작된 능동형 믹서는 회전 자기장에 의해 발생되는 토크를 기반으로 회전하는 원리를 이용하였다. 제작된 로터는 자성물질인 니켈 코발트로 전기 도금 공정을 거쳐 제작되었다. 그리고 유체가 흐를 수 있게 마이크로 채널을 PDMS 를 이용하여 제작하였다. 채널은 믹서의 성능만을 보기 위해 Y-자 모양의 간단한 구조로 설계하였다.
자성 물질 로터를 돌리기 위해 영구자성을 모터를 연결하여 회전자기장을 구현하였고, 선회하는 자기장을 따라 회전하는 로터의 성능을 이미지처리 기반으로 성능을 객관화 하였다. 유량에 변화를 주고 또한 모터에 전압을 6 볼트와 8 볼트를 인가하여 다양한 실험조건을 바탕으로 자기장 혼합기의 성능을 평가하였다. 0.01 이하의 레이놀즈 수를 갖는 유체를 혼합 할 때는 로터의 모양, 회전수에 관계없이 90 퍼센트 이상의 성능을 보았다. 하지만 0.01 이상의 레이놀즈 수를 갖는 유체의 경우 회전수가 낮은 경우에는 로터의 면적이 넓은 것이 약 10% 정도 우수한 성능을 보였고, 회전수가 높은 경우에는 로터의 면적에 관계없이 비슷한 성능을 내는 것을 확인하였다.
실험을 위해 제작된 회전 자기장 스테이지와 마이크로 혼합기를 올려두는 스테이지가 결합되어 있는 구조로 제작된 현재의 실험환경에서는 8 볼트를 초과하는 전압을 가하였을 때 스테이지의 떨림으로 실험 데이터를 얻을 수 없었다. 하지만 추후에 두 스테이지를 분리하여 제작한다면 더 높은 전압을 가할 수 있어 현재보다는 더 높은 유량에서도 충분한 혼합성능을 보여줄 것으로 기대된다. 그리고 니켈코발트 합금으로 구성된 로터를 생체 적합한 물질로 코팅을 하면 생화학 및 화학 물질을 분석하는데 바로 이용가능 할 것으로 보여진다. ⓒ 2014 DGIST
-
dc.description.degree Master -
dc.contributor.department Robotics Engineering -
dc.contributor.coadvisor Eun, Yong Soon -
dc.date.awarded 2014. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-05-18 -
dc.contributor.alternativeDepartment 대학원 로봇공학전공 -
dc.contributor.affiliatedAuthor Kim, Jin Hyuk -
dc.contributor.affiliatedAuthor Choi, Hong Soo -
dc.contributor.affiliatedAuthor Eun, Yong Soon -
dc.contributor.alternativeName 김진혁 -
dc.contributor.alternativeName 최홍수 -
dc.contributor.alternativeName 은용순 -
Files in This Item:
000002262540.pdf

000002262540.pdf

기타 데이터 / 2.16 MB / Adobe PDF download
Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE