Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Zhang, Chunfei -
dc.contributor.author Ju, Shenghong -
dc.contributor.author Kang, Tong-Hyun -
dc.contributor.author Park, Gisang -
dc.contributor.author Lee, Byong-June -
dc.contributor.author Miao, He -
dc.contributor.author Wu, Yunwen -
dc.contributor.author Yuan, Jinliang -
dc.contributor.author Yu, Jong-Sung -
dc.date.accessioned 2021-04-29T13:30:41Z -
dc.date.available 2021-04-29T13:30:41Z -
dc.date.created 2021-02-04 -
dc.date.issued 2021-01 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13493 -
dc.description.abstract Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica medium-assisted method is developed for the high-efficient synthesis of single-layer N-doped graphene encapsulating nickel nanoparticles (Ni@SNG), where silica nanosheets molecule sieves tactfully assist the self-limiting growth of single-layer graphene over Ni nanoparticles by depressing the diffusion of gaseous carbon radical reactants. The Ni@SNG sample synthesized at 800 °C shows excellent activity for HER in alkaline medium with a low overpotential of 99.8 mV at 10 mA cm-2, which is close to that of the state-of-the-art Pt/C catalyst. Significantly, the Ni@SNG catalyst is also developed as a binder-free electrode in magnetic field, exhibiting much improved performance than the common Nafion binder-based electrode. Therefore, the magnetism adsorption technique will be a greatly promising approach to overcome the high electron resistance and poor adhesive stability of polymer binder-based electrodes in practical applications. © 2021 American Chemical Society. All rights reserved. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c17557 -
dc.identifier.wosid 000614062400078 -
dc.identifier.scopusid 2-s2.0-85099944580 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.13, no.3, pp.4294 - 4304 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor N-doped carbon -
dc.subject.keywordAuthor single-layer graphene -
dc.subject.keywordAuthor nickel nanoparticles -
dc.subject.keywordAuthor core-shell structure -
dc.subject.keywordAuthor binder-free electrode -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus Hydrogen production -
dc.subject.keywordPlus Nanoparticles -
dc.subject.keywordPlus Nickel -
dc.subject.keywordPlus Silica -
dc.subject.keywordPlus Alkaline medium -
dc.subject.keywordPlus Ni Nanoparticles -
dc.subject.keywordPlus Nickel nanoparticles -
dc.subject.keywordPlus Synthesis (chemical) -
dc.subject.keywordPlus Adhesive stability -
dc.subject.keywordPlus Non-precious metal catalysts -
dc.subject.keywordPlus Self-limiting growths -
dc.subject.keywordPlus Silica nano-sheets -
dc.subject.keywordPlus State of the art -
dc.subject.keywordPlus Doping (additives) -
dc.subject.keywordPlus Adhesives -
dc.subject.keywordPlus Catalysts -
dc.subject.keywordPlus Cost effectiveness -
dc.subject.keywordPlus Electrodes -
dc.citation.endPage 4304 -
dc.citation.number 3 -
dc.citation.startPage 4294 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Light, Salts and Water Research Group 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE