Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lim, Sung Jun -
dc.contributor.author Kim, Jigeon -
dc.contributor.author Park, Jin Young -
dc.contributor.author Min, Jung-wook -
dc.contributor.author Yun, Seokjin -
dc.contributor.author Park, Taiho -
dc.contributor.author Kim, Younghoon -
dc.contributor.author Choi, Jongmin -
dc.date.accessioned 2021-04-29T14:30:02Z -
dc.date.available 2021-04-29T14:30:02Z -
dc.date.created 2021-03-02 -
dc.date.issued 2021-02 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/13500 -
dc.description.abstract CsPbI3 perovskite quantum dots (CsPbI3-PQDs) have recently come into focus as a light-harvesting material that can act as a platform through which to combine the material advantages of both perovskites and QDs. However, the low cubic-phase stability of CsPbI3-PQDs in ambient conditions has been recognized as a factor that inhibits device stability. TiO2 nanoparticles are the most regularly used materials as an electron transport layer (ETL) in CsPbI3-PQD photovoltaics; however, we found that TiO2 can facilitate the cubic-phase degradation of CsPbI3-PQDs due to its vigorous photocatalytic activity. To address these issues, we have developed chloride-passivated SnO2 QDs (Cl@SnO2 QDs), which have low photocatalytic activity and few surface traps, to suppress the cubic-phase degradation of CsPbI3-PQDs. Given these advantages, the CsPbI3-PQD solar cells based on Cl@SnO2 ETLs show significantly improved device operational stability (under conditions of 50% relative humidity and 1-sun illumination), compared to those based on TiO2 ETLs. In addition, the Cl@SnO2-based devices showed improved open circuit voltage and photocurrent density, resulting in enhanced power conversion efficiency (PCE) up to 14.5% compared to that of TiO2-based control devices (PCE of 13.8%). © 2021 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Suppressed Degradation and Enhanced Performance of CsPbI3Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c15484 -
dc.identifier.scopusid 2-s2.0-85100657158 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.13, no.5, pp.6119 - 6129 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor CsPbI3 perovskite quantum dots -
dc.subject.keywordAuthor colloidal quantum dots -
dc.subject.keywordAuthor phase stability -
dc.subject.keywordAuthor solar cells -
dc.subject.keywordAuthor electron transport layers -
dc.subject.keywordPlus Nanostructured materials -
dc.subject.keywordPlus Open circuit voltage -
dc.subject.keywordPlus Perovskite -
dc.subject.keywordPlus Photocatalytic activity -
dc.subject.keywordPlus Photocurrents -
dc.subject.keywordPlus Quantum chemistry -
dc.subject.keywordPlus Semiconductor quantum dots -
dc.subject.keywordPlus Solar cells -
dc.subject.keywordPlus TiO2 nanoparticles -
dc.subject.keywordPlus Titanium dioxide -
dc.subject.keywordPlus Ambient conditions -
dc.subject.keywordPlus Device stability -
dc.subject.keywordPlus Electron transport layers -
dc.subject.keywordPlus Light-harvesting -
dc.subject.keywordPlus Operational stability -
dc.subject.keywordPlus Photocurrent density -
dc.subject.keywordPlus Power conversion efficiencies -
dc.subject.keywordPlus Quantum dot solar cells -
dc.subject.keywordPlus Lead compounds -
dc.subject.keywordPlus Cell engineering -
dc.subject.keywordPlus Chlorine compounds -
dc.subject.keywordPlus Conversion efficiency -
dc.subject.keywordPlus Electron transport properties -
dc.subject.keywordPlus Nanocrystals -
dc.citation.endPage 6129 -
dc.citation.number 5 -
dc.citation.startPage 6119 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 13 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE