Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Shanmugam, Sangaraju -
dc.contributor.author Hyun, Su Yeon -
dc.date.accessioned 2017-05-10T08:53:07Z -
dc.date.available 2017-04-03T00:00:00Z -
dc.date.issued 2016 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002296411 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1476 -
dc.description.abstract Metal-air batteries have a lot of merits whereas there are still facing various fundamental issues to reach commercial applications such as poor cycleability, low round-trip efficiency and poor rate capability. For instance, the round-trip efficiency of metal-air batteries with bare carbon electrode is below 70% in contrast with that of the conventional LIBs-in case LiCoO2 is around 95%. These challenges are stem from instability of not only Li metal but also binder and electrolyte. Above all, the major challenge is the sluggish kinetics of oxygen reduction and evolution reactions at the oxygen electrode during battery discharge and charge. Therefore, the development of electrochemically active, stable and non-precious bifunctional catalyst is highly required for the commercialization of this technology for practical metal-air batteries.
We first focus on designing an inexpensive and highly active OER electrocatalyst, Co3V2O8 with 1D morphology consisting of nanotubes and nanorods which can be used in Zn-air battery. In addition to looking for new cost-effective materials with stable structure and also tuning the morphology of the existing material to improve their catalytic activity which is directly related with battery performance has been considered to improve oxygen evolution reaction. From this point of view, one dimensional (1D) nanostructure materials possess better triple phase boundary to facilitate efficient transport pathways for electrons and ions. Moreover, high surface area of 1D nanostructure expected to provide high performance to suppress sluggish oxygen electrode kinetics. To understand the effect of Co3V2O8 morphology on OER activity, we have synthesized 1D & 0D nanostructures and discussed their performance. The result demonstrates that the 1D-Co3V2O8 cathode exhibits superior OER activity and long term stability to those of 0D-Co3V2O8 and even for commercial precious metal catalysts. The excellent OER performance and long-term durability is attributed to the well-designed one dimensional nanorods and nanotubes like structure, the synergistic effect of different metal ions, and the presence of amorphous nitrogen-doped carbon.
In the second part of research, we developed Co-CoO/CNR catalysts as a bifunctional air cathode for the OER and ORR for application of Li-O2 batteries. High power density could be achieved with this system since the Li-O2 batteries possess higher open-circuit voltage of 2.96 V than that of Zn-air batteries (1.65 V). The Co-CoO/CNR cathode achieved a discharge capacity of 10569 mAh gcatalyst-1 at a current density of 100 mA g-1, which is higher than that of CNR electrode (7087 mAh gcatalyst-1). This result demonstrates that Co-CoO/CNR catalyst exhibits good oxygen reduction activity. Moreover, the Co-CoO/CNR cathode shows almost 6 times better cycling performance than CNR electrode with a cutoff capacity of 1000 mAh gcatalyst-1. The poor cycleability of Li-O2 batteries with CNR electrode should be caused by the accumulation of Li2CO3, which is the one of the major products in this oxygen electrode. The enhancement of discharge capacity and voltage observed for Co-CoO/CNR electrode may due to the presence of uniform mesoporous nanostructure with high surface area so that it could diffuse Li+ easily and provide space to accommodate discharge solid products. Furthermore, Co-CoO nanoparticles on CNR electrode might help to minimize the oxidation of carbon structure and form nanosized Li products during the discharge process. ⓒ 2016 DGIST
-
dc.description.tableofcontents I. Introduction 1 --
1.1 Forward 1 --
1.2 Objectives 3 --
II. Theoretical background 4 --
2.1 Metal-air battery 4 --
2.1.1 Metal-air battery fundamentals 4 --
2.2 Aqueous metal-air battery system 6 --
2.2.1 Zn-air battery 6 --
2.2.2 Working principle of Zn-air battery 7 --
2.2.3 Drawbacks of Zn-air battery 8 --
2.3 Non-aqueous metal-air battery system 10 --
2.3.1 Li-air battery 10 --
2.3.2 Working principle of Li-air battery 14 --
2.3.3 Drawbacks of Li-air battery 15 --
2.4 Literature survey on bifunctional (OER & ORR) catalyst 18 --
III. Experimental 21 --
3.1 Preparation of electrocatalysts 21 --
3.1.1 Chemicals 21 --
3.1.2 Synthetic approach 21 --
3.2 Characterization 24 --
3.2.1 Material characterization 24 --
3.2.2 Electrochemical characterization 24 --
3.2.3 Metal-air battery test 25 --
3.2.4 Air cathode preparation and Zn-air cell assembly 25 --
3.2.5 Air cathode preparation and Li-oxygen cell assembly 26 --
IV. Results and discussion 28 --
4.1 Development of cost-effective and efficient Co3V2O8 catalyst for Zn-air battery 28 --
4.1.1 Structural analysis 28 --
4.1.2 Morphology analysis 31 --
4.1.3 Studies on the electrochemical activities of catalyst 35 --
4.1.4 Zn-air battery test 45 --
4.1.5 Summary 47 --
4.2 Rational design of air cathode for Li-oxygen battery 48 --
4.2.1 Structural analysis 48 --
4.2.2 Morphology analysis 56 --
4.2.3 Electrochemical characterization 60 --
4.2.4 Li-oxygen battery test 64 --
4.2.5 Air cathode post-mortem analysis 72 --
4.2.6 Summary 79 --
V. Conclusions 80 --
References 81 --
국문 요약문 92
-
dc.format.extent 92 -
dc.language eng -
dc.publisher DGIST -
dc.subject Oxygen electrocatalyst -
dc.subject Metal-air battery -
dc.subject Lithium-oxygen (Li-O2) battery -
dc.subject Cobalt vanadium oxide -
dc.subject Co-CoO/CNR -
dc.subject 공기 촉매 -
dc.subject 금속 공기전지 -
dc.subject 리튬 공기전지 -
dc.subject 코발트 바나듐 옥사이드 -
dc.title Development of Efficient Electrocatalysts for Metal-Air Batteries -
dc.title.alternative 금속 공기전지용 고효율 양극촉매 개발 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2296411 -
dc.description.alternativeAbstract 본 논문은 현재 상용화된 이차전지 중 에너지 밀도가 가장 높은 리튬이온전지보다 이론 에너지 밀도가 훨씬 높아 전기 자동차 등의 차세대 에너지원으로서 활발하게 연구되고 있는 금속 공기전지의 양극 촉매 개발 연구에 대해 다룬다. 대기 중의 산소를 양극 활물질로 사용하는 금속 공기전지의 상용화를 위해서는 무엇보다도 전지의 충·방전시 공기극에서의 느린 산소발생 및 환원반응을 촉진하는 고효율의 이원기능 촉매 개발이 필요하다. 이를 위해 Pt/C, IrO2, RuO2 등 귀금속 기반의 촉매가 현재 사용되고 있으나, 제조단가가 높으며 낮은 선택성 및 내구성에 관한 문제점이 제기되고 있다. 따라서, 비귀금속계의 내구성을 지닌 고효율의 이원기능 촉매의 개발이 요구된다. 본 논문의 첫 번째 파트에서는 간단하고 저렴하며 대량생산이 가능한 전기방사법을 통해 아연 공기전지 (Zn-air battery)에 적용할 수 있는 나노로드 및 나노튜브 구조로 이루어진 일차원의 Co3V2O8 나노촉매를 개발하였다. 또한 촉매의 형태 및 구조가 촉매의 활성에 미치는 영향을 종합적으로 확인하기 위해 나노파티클 구조의 Co3V2O8 촉매를 합성한 후 그 성능을 비교하였다.
본 논문의 두 번째 파트에서는 이원기능의 Co-CoO/CNR 촉매를 합성하였고, 이를 리튬 공기전지에 적용하였을 시 100 mAh g-1의 전류밀도에서 10,569 mAh g-1 의 높은 방전용량을 얻었다. 이는 같은 전류 밀도에서의 CNR 촉매보다 1.5배 증가한 용량이며, 또한 1000 mAh g-1의 제한용량에서 86 사이클 이상의 안정적인 특성을 확인하였다. 이러한 기존의 낮은 안정성과 값비싼 귀금속 촉매를 대체할 수 있는 새로운 양극촉매 개발에 관한 연구는 금속 공기전지의 상업화를 앞당기는 데 기여할 수 있을 것이다. ⓒ 2016 DGIST
-
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Kim, Ha Suck -
dc.contributor.coadvisor 1330 -
dc.date.awarded 2016. 8 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-08-18 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Hyun, Su Yeon -
dc.contributor.affiliatedAuthor Shanmugam, Sangaraju -
dc.contributor.affiliatedAuthor Kim, Ha Suck -
dc.contributor.alternativeName 현수연 -
dc.contributor.alternativeName 상가라쥬샨무감 -
dc.contributor.alternativeName 김하석 -
Files in This Item:
000002296411.pdf

000002296411.pdf

기타 데이터 / 5.2 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE