Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Talantsev, Artem -
dc.contributor.author Elzwawy, Amir -
dc.contributor.author Kim, Sung-Joon -
dc.contributor.author Kim, CheolGi -
dc.date.accessioned 2021-10-07T02:00:04Z -
dc.date.available 2021-10-07T02:00:04Z -
dc.date.created 2021-05-14 -
dc.date.issued 2021-08 -
dc.identifier.issn 0169-4332 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/15413 -
dc.description.abstract Mesoscopic-scale effects of ferro-antiferromagnetic (F/AF) interface texture are simulated by an atomistic model, considering an exchange bias to be proportional to interfacial density of microscopic F-AF atomic coupled pairs. The model reveals a mediating role of crystalline growth direction on the exchange bias variability by other modifications of interface texture. By adjusting the number of the nearest neighboring atoms belonging to the interface plane, the growth direction defines topological possibility for exchange bias enhancement by roughness, as well as the range, within which the exchange bias can be tailored by substitutional defects. The model has been experimentally approved by investigation of exchange bias and texture modifications in a set of (0 0 1) and (1 1 1) textured NiFe/IrMn bilayers grown on Ta/Cu and Ta/Au hybrid seed layer stacks, respectively. The revealed variations of exchange bias with Au and Cu seed layer thicknesses are gradual, but have opposite signs. The result is well agreed with the simulated variability of coupling pair density for (0 0 1) and (1 1 1) interfaces. This confirms that crystallographic orientation of the F/AF interface plane sets topological possibility for tailoring the exchange bias by microscopic F-AF coupled pair density through mesoscopic modifications of the interface texture. © 2021 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier -
dc.title Microscopic manipulations of interatomic coupling density for tailoring of exchange bias mediated by mesoscopic interface topology -
dc.type Article -
dc.identifier.doi 10.1016/j.apsusc.2021.149861 -
dc.identifier.wosid 000652632600001 -
dc.identifier.scopusid 2-s2.0-85104911448 -
dc.identifier.bibliographicCitation Applied Surface Science, v.558 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Atomistic model -
dc.subject.keywordAuthor Exchange bias -
dc.subject.keywordAuthor Ferro-antiferromagnetic bilayers -
dc.subject.keywordAuthor Interface roughness -
dc.subject.keywordAuthor Seed layer thickness effect -
dc.subject.keywordAuthor Topological modifications of interface texture -
dc.subject.keywordPlus Seed layer thickness effect -
dc.subject.keywordPlus Topological modification of interface texture -
dc.subject.keywordPlus Textures -
dc.subject.keywordPlus Antiferromagnetism -
dc.subject.keywordPlus Superconducting materials -
dc.subject.keywordPlus Topology -
dc.subject.keywordPlus Antiferromagnetics -
dc.subject.keywordPlus Atomistic modelling -
dc.subject.keywordPlus Exchange bias -
dc.subject.keywordPlus Ferro-antiferromagnetic bilayer -
dc.subject.keywordPlus Growth directions -
dc.subject.keywordPlus Interface planes -
dc.subject.keywordPlus Interface roughness -
dc.subject.keywordPlus Mesoscopics -
dc.citation.title Applied Surface Science -
dc.citation.volume 558 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Lab for NanoBio-Materials & SpinTronics(nBEST) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE