Cited time in webofscience Cited time in scopus

Multi-axis Pressure sensor with Temperature Compensation based on Carbon-Composites 3D Printing

Title
Multi-axis Pressure sensor with Temperature Compensation based on Carbon-Composites 3D Printing
Alternative Title
탄소 복합체 폴리머의 3D 프린팅 기반 온도 보상 기능이 있는 다축 압력 센서
Author(s)
Hang-Gyeom Kim
DGIST Authors
Kim, Hang-GyeomKim, Hoe JoonYun, Dongwon
Advisor
김회준
Co-Advisor(s)
Dongwon Yun
Issued Date
2021
Awarded Date
2021/08
Type
Thesis
Subject
3D printing, carbon composites, pressure sensor, multi-axis sensing, temperature compensation
Description
3D printing, carbon composites, pressure sensor, multi-axis sensing, temperature compensation
Abstract
The additive manufacturing research confides in developing three-dimensional (3D) printing routes for the fabrication of devices with multifunctional materials in various inter-esting application areas such as self-healing, energy conversion/ storage/ harvesting, and sensing platforms. In this paper, we report the design optimization, fabrication, and charac-terization of a multi-axis pressure sensor with temperature compensation using fused fila-ment fabrication (FFF) 3D printing of conductive carbon-based composites. Additive man-ufacturing offers a faster fabrication of complex structures with multiple properties such as electrical, mechanical, or thermal properties. The complex and costly metal printing can be neglected, as the 3D printing of a conductive polymer is a promising technology to utilize the electrical properties of the printed materials along with mechanical flexibilities. The pre-sent work focuses on the development of a multi-axis pressure sensor integrated with a temperature-sensing element. The pressure-sensing mechanism is based on piezoresistive be-havior while temperature sensing relies on temperature-dependent resistance shift of the carbon composite. The pressure sensing part comprises a hollow structure to ensure mechan-ical deformation upon applied pressure while the temperature sensor is buried inside the housing material. Herein, the conductive three-dimensional printable polymer is synthesized by solution casting method with Polylactic acid (PLA), multi-walled carbon nanotubes (MWCNTs), and dichloromethane (DCM) solvent, which is transformed into filament for printing. The direction of pressure and magnitude of temperature can be evaluated separate-ly by calibrating the responses of an applied force and temperature. Moreover, an integrated temperature sensor calibrates the shift in the electrical resistance of the pressure sensor due to the alteration in environmental temperature. The additive manufactured dual pressure and temperature sensor could open up broad applications such as human motion monitoring sys-tems and force sensing.|본 논문에서 우리는 탄소 나노 튜브 복합체 폴리머의 Fused Filament Fabrication(FFF) 3D 프린팅을 사용한 온도 보상이 가능한 다축 압력센서의 설계, 제작, 및 특성분석을 보고한다. 3D 프린팅 기술은 복잡한 삼차원 구조체를 보다 쉽고 간편하게 제작할 수 있다. 또한 전도성 폴리머의 3D 프린팅은 기계적 유연함과 함께 전기적 특성을 동시에 제공하기 때문에 유연한 전자 기기 제작에 매우 적합한 기술로 많은 연구가 이루어지고 있다. 우리는 본 연구에서 FFF 3D 프린팅을 이용하여 온도 보상이 가능한 다축 압력센서를 제작하고 이를 모션 센싱 어플리케이션에 결합하였다. 압력 감지 메커니즘은 압저항 방식을 이용하고 온도 감지는 복합체의 온도에 따른 저항 변화로 감지한다. 압력 감지부는 범퍼 구조로 되어 있어 외력이 가해질 때 기계적인 변형을 받아 저항이 변화하고, 온도 센서는 외력에 의한 기계적 변형이 없이 오로지 온도에 의해서만 저항이 변화한다. 여기서 전도성 폴리머는 polylactic acid (PLA), multi-walled carbon nanotubes (MWCNTs), 그리고 dichloromethane(DCM) 용매를 이용한 용액 캐스팅 방법을 사용하고, 최종적으로 3D프린팅을 위한 필라멘트로 제작한다. 본 연구에서 제안하는 센서는 외력의 크기와 방향을 측정하여 정량화 할 수 있을 뿐 아니라, 온도에 따른 저항보상도 가능하게 한다. 이러한 온도 보상이 가능한 다축 압력 센서는 모션 모니터링 시스템 등 다양한 어플리케이션에 적용될 수 있다.
Table Of Contents
List of Contents

ABSTRACT
List of Contents
List of Tables
List of Figures
1. Introduction 1
2. Overall objective 4
2.1 Optimization of the 3D printable conductive polymer composite 4
2.2 Sensor design for multi-axis sensing and temperature compensation 5
3. Background / Review of relevant previous work 6
3.1 Piezoresistive pressure sensor 6
3.2 3D printing technology 7
4. MWCNTs/PLA Fabrication & Characterization 10
4.1 Fabrication of MWCNTs/PLA composite filament 10
4.2 Characterization of MWCNTs/PLA nanocomposite 13
4.2.1 Sample preparation and measurement technique 13
4.2.2 Electrical properties of MWCNTs/PLA nanocomposite 15
4.2.3 Mechanical properties of MWCNTs/PLA nanocomposite 17
5. Sensor Characterization & Motion Sensing Application 21
5.1 Sensor design and operation principle 21
5.2 Sensor characterization 22
5.3 3D printed multi-axis pressure sensor application 29
6. CONCLUSION 32
7. REFERENCE 34
URI
http://dgist.dcollection.net/common/orgView/200000497159

http://hdl.handle.net/20.500.11750/16607
DOI
10.22677/thesis.200000497159
Degree
Master
Department
Robotics Engineering
Publisher
DGIST
Related Researcher
  • 김회준 Kim, Hoe Joon
  • Research Interests MEMS/NEMS; Micro/Nano Sensors; Piezoelectric Devices; Nanomaterials; Heat Transfer; Atomic Force Microscope
Files in This Item:
200000497159.pdf

200000497159.pdf

기타 데이터 / 1.81 MB / Adobe PDF download
Appears in Collections:
Department of Robotics and Mechatronics Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE