Cited time in webofscience Cited time in scopus

Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation

Title
Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation
Author(s)
Kim, JigeonHan, SanghunLee, GyudongChoi, JongminKo, Min JaeKim, Younghoon
Issued Date
2022-11
Citation
Chemical Engineering Journal, v.448
Type
Article
Author Keywords
Ligand designPerovskite quantum dotsSingle-step deposition processSolar cellsSolution-phase ligand exchange
Keywords
SOLAR-CELLSPHASESTABILITYEXCHANGENANOCRYSTALSEFFICIENCYCRYSTALSFILMSPBSEINKS
ISSN
1385-8947
Abstract
Lead halide perovskite colloidal quantum dots (PQDs) are receiving great interest in emerging photovoltaics because of their excellent photovoltaic properties and the room-temperature processability without a thermal annealing step. Conductive thick PQD absorbers reported to date have been fabricated via multiple-step layer-by-layer deposition based on solid-state ligand exchange; however, this approach requiring a lot of processing time and cost is not suitable for the mass production. Thus, a single-step fabrication approach of conductive thick PQD absorbers should be devised. Herein, we demonstrate that conductive thick CsPbI3-PQD absorbers can be fabricated via a single-step process based on the surface ligand manipulation and employed in efficient PQD solar cells. We find that the conventional ethyl acetate-based post-treatment significantly removes long-chain ligands of the unexchanged PQDs (UN-PQDs) and cause film delamination of thick UN-PQD solids because of drastic volume shrinkage. Thus, we employ the methyl acetate-based post-treatment using phenethylammonium acetate (PEAOAc) to replace both long-chain oleate and oleylammonium within thick UN-PQD solids with short-chain PEA and OAc ligands without film delamination. To further reduce long-chain ligands within the resultant PQD solids, we also employ the PQDs prepared via a solution-phase ligand exchange (SPLE-PQDs) using the phenethylammonium iodide. Furthermore, we perform various spectroscopic measurements, including Fourier-transform infrared, nuclear magnetic resonance, and X-ray photoelectron spectroscopy, to quantitatively analyze the surface chemistry and ligands of PQDs. Consequently, CsPbI3-PQD solar cells, fabricated via a single-step process using SPLE-PQDs and PEAOAc post-treatment, show improved power conversion efficiency (13.7%) compared to that of the UN-PQD device (12.1%). © 2022 Elsevier B.V.
URI
http://hdl.handle.net/20.500.11750/16976
DOI
10.1016/j.cej.2022.137672
Publisher
Elsevier BV
Related Researcher
  • 최종민 Choi, Jongmin
  • Research Interests Advanced Metal Oxides; Colloidal Quantum Dots; Perovskite-Quantum Dot Hybrid Nanomaterials; Photocatalytic Materials
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Chemical & Energy Materials Engineering (CEME) Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE