Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Juhyung -
dc.contributor.author Bang, Junhyeok -
dc.contributor.author Kang, Joongoo -
dc.date.accessioned 2022-11-02T07:30:28Z -
dc.date.available 2022-11-02T07:30:28Z -
dc.date.created 2022-07-11 -
dc.date.issued 2022-06 -
dc.identifier.issn 1948-7185 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17033 -
dc.description.abstract Ultrafast charge transfer in van der Waals (vdW) heterostructures enables efficient control of two-dimensional material properties through strong optical absorption and subsequent carrier transfer. Here, using real-time timedependent density functional theory coupled to molecular dynamics, we investigated the nonequilibrium dynamics of charge-density-wave (CDW) melting in 1T-TaS2 triggered by ultrafast charge transfer in 1T-TaS2/MoSe2 or WSe2 heterostructures. Despite the fast and sufficient charge transfer from the MoSe2 (or WSe2) "electrode" to the 1T-TaS2 layer, the electronic excitation of the vdW heterostructure does not lead to the nonthermal CDW transition of 1T-TaS2. Instead, the TaS2 lattice is heated by carrier-lattice scattering, leading to thermal CDW melting at high ionic temperatures. The lack of nonthermal melting follows from the fact that the time scale of carrier recombination in 1T-TaS2 is similar to or faster than that of charge transfer. These findings provide physical insights into understanding the CDW melting dynamics in vdW heterostructures under nonequilibrium conditions. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Nonequilibrium Charge-Density-Wave Melting in 1T-TaS2 Triggered by Electronic Excitation: A Real-Time Time-Dependent Density Functional Theory Study -
dc.type Article -
dc.identifier.doi 10.1021/acs.jpclett.2c01352 -
dc.identifier.wosid 000819355900001 -
dc.identifier.scopusid 2-s2.0-85133214148 -
dc.identifier.bibliographicCitation Journal of Physical Chemistry Letters, v.13, no.25, pp.5711 - 5718 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus PHASE-TRANSITIONS -
dc.subject.keywordPlus STATE -
dc.subject.keywordPlus MICROSCOPY -
dc.subject.keywordPlus DYNAMICS -
dc.citation.endPage 5718 -
dc.citation.number 25 -
dc.citation.startPage 5711 -
dc.citation.title Journal of Physical Chemistry Letters -
dc.citation.volume 13 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Computational Materials Theory Group 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE