Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Chae, Munseok S. -
dc.contributor.author Heo, Jongwook W. -
dc.contributor.author Lim, Sung-Chul -
dc.contributor.author Hong, Seung-Tae -
dc.date.available 2017-07-11T05:33:06Z -
dc.date.created 2017-04-10 -
dc.date.issued 2016-04 -
dc.identifier.issn 0020-1669 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2699 -
dc.description.abstract The crystal structures and electrochemical properties of ZnxMo6S8 Chevrel phases (x = 1, 2) prepared via electrochemical Zn2+-ion intercalation into the Mo6S8 host material, in an aqueous electrolyte, were characterized. Mo6S8 [trigonal, R3, a = 9.1910(6) Å, c = 10.8785(10) Å, Z = 3] was first prepared via the chemical extraction of Cu ions from Cu2Mo6S8, which was synthesized via a solid-state reaction for 24 h at 1000 °C. The electrochemical zinc-ion insertion into Mo6S8 occurred stepwise, and two separate potential regions were depicted in the cyclic voltammogram (CV) and galvanostatic profile. ZnMo6S8 first formed from Mo6S8 in the higher-voltage region around 0.45-0.50 V in the CV, through a pseudo two-phase reaction. The inserted zinc ions occupied the interstitial sites in cavities surrounded by sulfur atoms (Zn1 sites). A significant number of the inserted zinc ions were trapped in these Zn1 sites, giving rise to the first-cycle irreversible capacity of ∼46 mAh g-1 out of the discharge capacity of 134 mAh g-1 at a rate of 0.05 C. In the lower-voltage region, further insertion occurred to form Zn2Mo6S8 at around 0.35 V in the CV, also involving a two-phase reaction. The electrochemical insertion and extraction into the Zn2 sites appeared to be relatively reversible and fast. The crystal structures of Mo6S8, ZnMo6S8, and Zn2Mo6S8 were refined using X-ray Rietveld refinement techniques, while the new structure of Zn2Mo6S8 was determined for the first time in this study using the technique of structure determination from powder X-ray diffraction data. With the zinc ions inserted into Mo6S8 forming Zn2Mo6S8, the cell volume and a parameter increased by 5.3% and 5.9%, respectively, but the c parameter decreased by 6.0%. The average Mo-Mo distance in the Mo6 cluster decreased from 2.81 to 2.62 Å. © 2016 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes -
dc.type Article -
dc.identifier.doi 10.1021/acs.inorgchem.5b02362 -
dc.identifier.scopusid 2-s2.0-84963990562 -
dc.identifier.bibliographicCitation Inorganic Chemistry, v.55, no.7, pp.3294 - 3301 -
dc.subject.keywordPlus CATIONS -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus Chemistry -
dc.subject.keywordPlus CLUSTER CHALCOGENIDE ELECTROCHemISTRY -
dc.subject.keywordPlus INSERTION -
dc.subject.keywordPlus MO3S4 -
dc.subject.keywordPlus MO6S8 -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus RECHARGEABLE LITHIUM BATTERIES -
dc.citation.endPage 3301 -
dc.citation.number 7 -
dc.citation.startPage 3294 -
dc.citation.title Inorganic Chemistry -
dc.citation.volume 55 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Battery Materials Discovery Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE