Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Urbanek, Michal -
dc.contributor.author Uhlir, Vojtech -
dc.contributor.author Lambert, Charles-Henri -
dc.contributor.author Kan, Jimmy J. -
dc.contributor.author Eibagi, Nasim -
dc.contributor.author Vanatka, Marek -
dc.contributor.author Flajsman, Lukas -
dc.contributor.author Kalousek, Radek -
dc.contributor.author Im, Mi-Young -
dc.contributor.author Fischer, Peter -
dc.contributor.author Sikola, Tomas -
dc.contributor.author Fullerton, Eric E. -
dc.date.available 2017-07-11T05:59:21Z -
dc.date.created 2017-04-10 -
dc.date.issued 2015-03 -
dc.identifier.issn 2469-9950 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/2918 -
dc.description.abstract Dynamic switching of the vortex circulation in magnetic nanodisks by fast-rising magnetic field pulse requires annihilation of the vortex core at the disk boundary and reforming a new vortex with the opposite sense of circulation. Here we study the influence of pulse parameters on the dynamics and efficiency of the vortex core annihilation in permalloy (Ni80Fe20) nanodisks. We use magnetic transmission soft x-ray microscopy to experimentally determine a pulse rise time-pulse amplitude phase diagram for vortex circulation switching and investigate the time-resolved evolution of magnetization in different regions of the phase diagram. The experimental phase diagram is compared with an analytical model based on Thiele's equation describing high-amplitude vortex core motion in a parabolic potential. We find that the analytical model is in good agreement with experimental data for a wide range of disk geometries. From the analytical model and in accordance with our experimental finding we determine the geometrical condition for dynamic vortex core annihilation and pulse parameters needed for the most efficient and fastest circulation switching. The comparison of our experimental results with micromagnetic simulations shows that the micromagnetic simulations of "ideal" disks with diameters larger than ∼250 nm overestimate nonlinearities in susceptibility and eigenfrequency. This overestimation leads to the core polarity switching near the disk boundary, which then in disagreement with experimental findings prevents the core annihilation and circulation switching. We modify the micromagnetic simulations by introducing the "boundary region" of reduced magnetization to simulate the experimentally determined susceptibility and in these modified micromagnetic simulations we are able to reproduce the experimentally observed dynamic vortex core annihilation and circulation switching. © 2015 American Physical Society. -
dc.language English -
dc.publisher American Physical Society -
dc.title Dynamics and efficiency of magnetic vortex circulation reversal -
dc.type Article -
dc.identifier.doi 10.1103/PhysRevB.91.094415 -
dc.identifier.scopusid 2-s2.0-84925876330 -
dc.identifier.bibliographicCitation Physical Review B, v.91, no.9 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus STATE -
dc.subject.keywordPlus PERMALLOY -
dc.subject.keywordPlus DISKS -
dc.subject.keywordPlus FIELD -
dc.citation.number 9 -
dc.citation.title Physical Review B -
dc.citation.volume 91 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
ETC 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE