Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Jo, Hanggochnuri -
dc.contributor.author Sohn, Ahrum -
dc.contributor.author Shin, Kyung-Sik -
dc.contributor.author Kumar, Brijesh -
dc.contributor.author Kim, Jae Hyun -
dc.contributor.author Kim, Dong-Wook -
dc.contributor.author Kim, Sang-Woo -
dc.date.available 2017-07-11T06:24:48Z -
dc.date.created 2017-04-10 -
dc.date.issued 2014-01 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3125 -
dc.description.abstract An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using these well-dispersed Au NPs revealed that such a self-assembled Au NP array can induce a strong plasmonic field. Furthermore, we demonstrated a new architecture of plasmon excitation in a bulk heterojunction (BHJ) inverted organic solar cell (IOSC) using the Au NP array with AAO. The optical response of an active layer poly(3-hexylthiophene):(6,6)-phenyl-C 61-butyric acid methyl ester was enhanced by this strong plasmonic field associated a well-dispersed Au NP array. A comparative study of AAO with and without Au NPs confirmed plasmonic improvement of the BHJ IOSC. Simulation results showed that Au NPs concentrate the incoming light into a strongly localized field and enhance light absorption in a wide wavelength range. © 2013 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Novel Architecture of Plasmon Excitation Based on Self-Assembled Nanoparticle Arrays for Photovoltaics -
dc.type Article -
dc.identifier.doi 10.1021/am4045585 -
dc.identifier.scopusid 2-s2.0-84892918546 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.6, no.2, pp.1030 - 1035 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor plasmonic effect -
dc.subject.keywordAuthor AAO template -
dc.subject.keywordAuthor ZnO -
dc.subject.keywordAuthor self-assemble -
dc.subject.keywordAuthor surface-enhanced Raman spectroscopy -
dc.subject.keywordAuthor organic solar cell -
dc.subject.keywordPlus ORGANIC SOLAR-CELLS -
dc.subject.keywordPlus ENHANCED RAMAN-SCATTERING -
dc.subject.keywordPlus SURFACE-PLASMON -
dc.subject.keywordPlus TRANSPORT ENHANCEMENT -
dc.subject.keywordPlus METAL NANOPARTICLES -
dc.subject.keywordPlus OPTICAL-PROPERTIES -
dc.subject.keywordPlus AU NANOPARTICLES -
dc.subject.keywordPlus CARBON NANOTUBES -
dc.subject.keywordPlus NANOROD ARRAYS -
dc.subject.keywordPlus EFFICIENCY -
dc.citation.endPage 1035 -
dc.citation.number 2 -
dc.citation.startPage 1030 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 6 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Energy Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE