Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Farha, Omar K. ko
dc.contributor.author Eryazici, Ibrahim ko
dc.contributor.author Jeong, Nak Cheon ko
dc.contributor.author Hauser, Brad G. ko
dc.contributor.author Wilmer, Christopher E. ko
dc.contributor.author Sarjeant, Amy A. ko
dc.contributor.author Snurr, Randall Q. ko
dc.contributor.author Nguyen, SonBinh T. ko
dc.contributor.author Yazaydin, A. Oezguer ko
dc.contributor.author Hupp, Joseph T. ko
dc.date.available 2017-07-11T06:53:19Z -
dc.date.created 2017-04-10 -
dc.date.issued 2012-09 -
dc.identifier.citation Journal of the American Chemical Society, v.134, no.36, pp.15016 - 15021 -
dc.identifier.issn 0002-7863 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/3334 -
dc.description.abstract We have synthesized, characterized, and computationally simulated/validated the behavior of two new metal-organic framework (MOF) materials displaying the highest experimental Brunauer-Emmett-Teller (BET) surface areas of any porous materials reported to date (∼7000 m2/g). Key to evacuating the initially solvent-filled materials without pore collapse, and thereby accessing the ultrahigh areas, is the use of a supercritical CO2 activation technique. Additionally, we demonstrate computationally that by shifting from phenyl groups to "space efficient" acetylene moieties as linker expansion units, the hypothetical maximum surface area for a MOF material is substantially greater than previously envisioned (∼14600 m2/g (or greater) versus ∼10500 m2/g). © 2012 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.subject Acetylene -
dc.subject Activation Techniques -
dc.subject Brunauer-Emmett-Teller Surface Areas -
dc.subject Carbon Dioxide -
dc.subject Controlled Study -
dc.subject Crystallography, X-Ray -
dc.subject Java Programming Language -
dc.subject Mathematical Computing -
dc.subject Metal Organic Framework -
dc.subject Metal Organic Framework Materials -
dc.subject Models, Molecular -
dc.subject Molecular Dynamics Simulation -
dc.subject Molecular Structure -
dc.subject Organometallic Compounds -
dc.subject Phenyl Group -
dc.subject Pore Collapse -
dc.subject Porosity -
dc.subject Porous Materials -
dc.subject Space Efficient -
dc.subject Supercritical CO -
dc.subject Surface Area -
dc.subject Surface Properties -
dc.subject Surface Property -
dc.title Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? -
dc.type Article -
dc.identifier.doi 10.1021/ja3055639 -
dc.identifier.wosid 000308574800060 -
dc.identifier.scopusid 2-s2.0-84866377075 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Farha, Omar K. -
dc.contributor.nonIdAuthor Eryazici, Ibrahim -
dc.contributor.nonIdAuthor Hauser, Brad G. -
dc.contributor.nonIdAuthor Wilmer, Christopher E. -
dc.contributor.nonIdAuthor Sarjeant, Amy A. -
dc.contributor.nonIdAuthor Snurr, Randall Q. -
dc.contributor.nonIdAuthor Nguyen, SonBinh T. -
dc.contributor.nonIdAuthor Yazaydin, A. Oezguer -
dc.contributor.nonIdAuthor Hupp, Joseph T. -
dc.identifier.citationVolume 134 -
dc.identifier.citationNumber 36 -
dc.identifier.citationStartPage 15016 -
dc.identifier.citationEndPage 15021 -
dc.identifier.citationTitle Journal of the American Chemical Society -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.contributor.affiliatedAuthor Jeong, Nak Cheon -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Supramolecular Inorganic Chemistry Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE