Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Dhakal, Krishna P. -
dc.contributor.author Roy, Shrawan -
dc.contributor.author Jang, Houk -
dc.contributor.author Chen, Xiang -
dc.contributor.author Yun, Won Seok -
dc.contributor.author Kim, Hyunmin -
dc.contributor.author Lee, JaeDong -
dc.contributor.author Kim, Jeongyong -
dc.contributor.author Ahn, Jong-Hyun -
dc.date.available 2017-08-10T08:10:39Z -
dc.date.created 2017-08-09 -
dc.date.issued 2017-06 -
dc.identifier.issn 0897-4756 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4142 -
dc.description.abstract The photocarrier relaxation between direct and indirect band gaps along the high symmetry K-γ line in the Brillion zone reveals interesting electronic properties of the transition metal dichalcogenides (TMDs) multilayer films. In this study, we reported on the local strain engineering and tuning of an electronic band structure of TMDs multilayer films along the K-γ line by artificially creating one-dimensional wrinkle structures. Significant photoluminescence (PL) intensity enhancement in conjunction with continuously tuned optical energy gaps was recorded at the high strain regions. A direct optical band gap along K-K points and an indirect optical gap along γ-K points measured from the PL spectra of multilayer samples monotonically decreased as the strain increased, while the indirect band gap along -γ was unaffected owing to the same level of local strain in the range of 0%-2%. The experimental results of band gap tuning were in agreement with the density functional theory calculation results. Local strain modified the band structure in which K-conduction band valley (CBV) was aligned below the -CBV, and this explained the observed local PL enhancement that made the material indirect via the K-γ transition. The study also reported experimental evidence for the funneling of photogenerated excitons toward regions of a higher strain at the top of the wrinkle geometry. © 2017 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title Local Strain Induced Band Gap Modulation and Photoluminescence Enhancement of Multilayer Transition Metal Dichalcogenides -
dc.type Article -
dc.identifier.doi 10.1021/acs.chemmater.7b00453 -
dc.identifier.scopusid 2-s2.0-85021447470 -
dc.identifier.bibliographicCitation Chemistry of Materials, v.29, no.12, pp.5124 - 5133 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus Bandgap Modulation -
dc.subject.keywordPlus Bilayersband Structure -
dc.subject.keywordPlus Density Functional Theory -
dc.subject.keywordPlus Electronic Structure -
dc.subject.keywordPlus Electronic Band Structure -
dc.subject.keywordPlus Electronic Properties -
dc.subject.keywordPlus Energy Gap -
dc.subject.keywordPlus Experimental Evidence -
dc.subject.keywordPlus Grain Boundaries -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus Layer MoS2 -
dc.subject.keywordPlus Molybdenum Disulfide -
dc.subject.keywordPlus Monolayer MoS2 -
dc.subject.keywordPlus Multi Layer Films -
dc.subject.keywordPlus Multi Layers -
dc.subject.keywordPlus Optical Energy Gap -
dc.subject.keywordPlus Optical Multilayers -
dc.subject.keywordPlus Photogenerated Excitons -
dc.subject.keywordPlus Photoluminescence -
dc.subject.keywordPlus Photoluminescence Enhancement -
dc.subject.keywordPlus Photoluminescence Intensities -
dc.subject.keywordPlus Transition Metals Dichalcogenides -
dc.subject.keywordPlus Transition Metalss -
dc.subject.keywordPlus Tuning -
dc.subject.keywordPlus WS2 -
dc.subject.keywordPlus WSE2 -
dc.citation.endPage 5133 -
dc.citation.number 12 -
dc.citation.startPage 5124 -
dc.citation.title Chemistry of Materials -
dc.citation.volume 29 -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE