Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Abbas, Kaleem -
dc.contributor.author Hwang, Jaeseok -
dc.contributor.author Bae, Garam -
dc.contributor.author Choi, Hongsoo -
dc.contributor.author Kang, Dae Joon -
dc.date.available 2017-08-10T08:14:05Z -
dc.date.created 2017-08-09 -
dc.date.issued 2017-04 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4194 -
dc.description.abstract We investigate the effect of electric field on VO2 back-gated field effect transistor (FET) devices. Using hybrid dielectric layers, we demonstrate the highest resistance modulation on the order of 102 in VO2 at a positive gate bias of 80 V (1.6 MV/cm). VO2 FET devices are prepared on SiO2 substrates of different thicknesses (100-300 nm) and hybrid dielectric layers of Al2O3/SiO2 (500 nm). For thicknesses less than 300 nm, no electric-field effects are observed, whereas for a 300 nm thickness, a small decrease in resistance is observed under a 0.2 MV/cm electric field. Under the electrostatic effect, the carrier concentration increases in VO2 devices, decreasing the resistance and the transition temperature from 66.75 to 64 °C. The leakage analysis shows that the interface quality of VO2 films on hybrid dielectric layers can be further improved. These studies suggest a multilevel fast resistance switching with the electric field and give an insight into the gate-source leakage current, which limits the phase transition in VO2 in an electric field. © 2017 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Control of Multilevel Resistance in Vanadium Dioxide by Electric Field Using Hybrid Dielectrics -
dc.type Article -
dc.identifier.doi 10.1021/acsami.6b16424 -
dc.identifier.scopusid 2-s2.0-85018506570 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.9, no.15, pp.13571 - 13576 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor vanadium dioxide -
dc.subject.keywordAuthor insulator-metal transition -
dc.subject.keywordAuthor electric field -
dc.subject.keywordAuthor Mott transistor -
dc.subject.keywordAuthor hybrid dielectric -
dc.subject.keywordPlus Carrier Concentration -
dc.subject.keywordPlus Dielectric Materials -
dc.subject.keywordPlus Driven -
dc.subject.keywordPlus Effect Transistors -
dc.subject.keywordPlus Electric Field -
dc.subject.keywordPlus Electric Field Effects -
dc.subject.keywordPlus Electric Fields -
dc.subject.keywordPlus Electrostatic Devices -
dc.subject.keywordPlus Electrostatic Effect -
dc.subject.keywordPlus Field Effect Transistors -
dc.subject.keywordPlus Hybrid Dielectric -
dc.subject.keywordPlus Hybrid Dielectrics -
dc.subject.keywordPlus Insulator Metal Transition -
dc.subject.keywordPlus Interface Quality -
dc.subject.keywordPlus Interfaces (Materials) -
dc.subject.keywordPlus Metal Insulator Transition -
dc.subject.keywordPlus Mott Transistor -
dc.subject.keywordPlus Mott Transition -
dc.subject.keywordPlus Nanobeams -
dc.subject.keywordPlus Oxide Interface -
dc.subject.keywordPlus Phase Transition -
dc.subject.keywordPlus Positive Gate Bias -
dc.subject.keywordPlus Power Field Effect Transistors -
dc.subject.keywordPlus Quality Control -
dc.subject.keywordPlus Resistance Modulation -
dc.subject.keywordPlus Resistance Switching -
dc.subject.keywordPlus Temperature -
dc.subject.keywordPlus Thin Films -
dc.subject.keywordPlus Vanadium -
dc.subject.keywordPlus Vanadium Dioxide -
dc.subject.keywordPlus VO2 -
dc.citation.endPage 13576 -
dc.citation.number 15 -
dc.citation.startPage 13571 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 9 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-Micro Robotics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE