Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Youngjin -
dc.contributor.author Park, Min-Kyu -
dc.contributor.author Kim, Seunguk -
dc.contributor.author Shin, Jeong Hee -
dc.contributor.author Moon, Cheil -
dc.contributor.author Hwang, Jae Youn -
dc.contributor.author Choi, Jun-Chan -
dc.contributor.author Park, Heewon -
dc.contributor.author Kim, Hak-Rin -
dc.contributor.author Jang, Jae Eun -
dc.date.available 2017-09-11T03:34:19Z -
dc.date.created 2017-09-11 -
dc.date.issued 2017-08 -
dc.identifier.issn 2330-4022 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4418 -
dc.description.abstract Wide range of color change in nanohole array structure on a metal film have been successfully demonstrated using asymmetric-lattice design of nanoholes and an electrically switching polarization rotator. Recently, some studies have been reported that various color states were obtained in a single unit cell structure using extraordinary optical transmission (EOT) of nanopatterned structure, which could be one of the most important solutions for achieving ultrahigh integration density in optoelectronic devices. However, because they used the interfacial refractive index or dielectric constant as controlling factors for the color tuning, they were not capable of inducing a changeable range of color with different primary color states. To overcome this limitation, in this study, an asymmetric-lattice nanohole array design was integrated with an electrically controlled polarization rotator, employing a twisted nematic (TN) liquid crystal (LC). This simple structure of nanohole arrays with a rectangular lattice enabled mixed color states as well as precisely designed two different primary colors, by modulating the polarization of the incident light. The color-tuning shift was greater than 120 nm. Since the surface plasmonic (SP) modes on both sides, a top and a bottom interface, were matched better by the TN-LC layer assembled on the rectangular-lattice nanohole metal layer, the transmittance at the resonance peak wavelength was increased by 158% compared to that of the bare nanohole structure. The nanohole-array-on-metal-film simultaneously functions as an electrode, and this advantage, coupled with the low driving voltage of the TN-LC layer, can open new possibilities in applications to various optoelectronic device concepts. © 2017 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator -
dc.type Article -
dc.identifier.doi 10.1021/acsphotonics.7b00249 -
dc.identifier.wosid 000408077800012 -
dc.identifier.scopusid 2-s2.0-85027398556 -
dc.identifier.bibliographicCitation ACS Photonics, v.4, no.8, pp.1954 - 1966 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor nanohole array -
dc.subject.keywordAuthor plasmonic resonance -
dc.subject.keywordAuthor asymmetric lattice -
dc.subject.keywordAuthor tunable color filter -
dc.subject.keywordAuthor liquid crystal -
dc.subject.keywordPlus EXTRAORDINARY OPTICAL-TRANSMISSION -
dc.subject.keywordPlus HOLE ARRAYS -
dc.subject.keywordPlus ENHANCED TRANSMISSION -
dc.subject.keywordPlus LIQUID-CRYSTAL -
dc.subject.keywordPlus SUBWAVELENGTH APERTURES -
dc.subject.keywordPlus LIGHT -
dc.subject.keywordPlus NANOSTRUCTURES -
dc.subject.keywordPlus PARAMETERS -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus FILMS -
dc.citation.endPage 1966 -
dc.citation.number 8 -
dc.citation.startPage 1954 -
dc.citation.title ACS Photonics -
dc.citation.volume 4 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Optics; Physics -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE