Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Ji-wook -
dc.contributor.author Seo, Daeha -
dc.contributor.author Lee, Jung-uk -
dc.contributor.author Southard, Kaden M. -
dc.contributor.author Lim, Yongjun -
dc.contributor.author Kim, Daehyun -
dc.contributor.author Gartner, Zev J. -
dc.contributor.author Jun, Young-wook -
dc.contributor.author Cheon, Jinwoo -
dc.date.available 2017-09-18T09:49:58Z -
dc.date.created 2017-09-18 -
dc.date.issued 2017-09 -
dc.identifier.issn 1754-2189 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/4502 -
dc.description.abstract Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to answer a host of important biological questions. This protocol describes a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. The key components of this tool are a magnetoplasmonic nanoparticle (MPN) actuator that delivers defined spatial and mechanical cues to receptors through target-specific one-to-one engagement and a micromagnetic tweezers (μMT) that remotely controls the magnitude of force exerted on a single MPN. In our approach, a SNAP-tagged cell-surface receptor of interest is conjugated with a single-stranded DNA oligonucleotide, which hybridizes to its complementary oligonucleotide on the MPN. This protocol consists of four major stages: (i) chemical synthesis of MPNs, (ii) conjugation with DNA and purification of monovalent MPNs, (iii) modular targeting of MPNs to cell-surface receptors, and (iv) control of spatial and mechanical properties of targeted mechanosensitive receptors in live cells by adjusting the μMT-to-MPN distance. Using benzylguanine (BG)-functionalized MPNs and model cell lines expressing either SNAP-tagged Notch or vascular endothelial cadherin (VE-cadherin), we provide stepwise instructions for mechanogenetic control of receptor clustering and for mechanical receptor activation. The ability of this method to differentially control spatial and mechanical inputs to targeted receptors makes it particularly useful for interrogating the differential contributions of each individual cue to cell signaling. The entire procedure takes up to 1 week. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles -
dc.type Article -
dc.identifier.doi 10.1038/nprot.2017.071 -
dc.identifier.scopusid 2-s2.0-85028501864 -
dc.identifier.bibliographicCitation Nature Protocols, v.12, no.9, pp.1871 - 1889 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus Endosomal Escape -
dc.subject.keywordPlus Fe Nanoparticles -
dc.subject.keywordPlus Intracellular Delivery -
dc.subject.keywordPlus Living Cells -
dc.subject.keywordPlus Magnetic Nano Particles (MNPs) -
dc.subject.keywordPlus Molecule Force Spectroscopy -
dc.subject.keywordPlus Quantum Dots -
dc.subject.keywordPlus Remote Control -
dc.subject.keywordPlus Signal Transduction -
dc.subject.keywordPlus Spatio Temporal Control -
dc.citation.endPage 1889 -
dc.citation.number 9 -
dc.citation.startPage 1871 -
dc.citation.title Nature Protocols -
dc.citation.volume 12 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry SMALL LAB(Single Molecule Approaches to ceLL Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE