Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Song, Chong-Myeong -
dc.contributor.author Kim, Dongsu -
dc.contributor.author Lim, Hyeongtae -
dc.contributor.author Kang, Hongki -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Kwon, Hyuk- Jun -
dc.date.accessioned 2023-06-09T09:40:17Z -
dc.date.available 2023-06-09T09:40:17Z -
dc.date.created 2023-03-15 -
dc.date.issued 2023-04 -
dc.identifier.issn 0169-4332 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45966 -
dc.description.abstract Two-dimensional (2D) tin disulfide (SnS2) is emerging as a viable channel material for high-performance field-effect transistors (FET) with high intrinsic mobility. To implement a high-performance two-dimensional SnS2 FET, high field-effect mobility (μFE), steep subthreshold swing (SS), high on-current value (Ion), and high on/off ratio (Ion/Ioff) must be realized. To improve these parameters, we first fabricated a high-k (∼30.5) yttrium-doped hafnium dioxide (Y:HfO2) film through a solution process to suppress Coulomb electron scattering, and to enhance the semiconductor-dielectric interface with an efficient metal–oxygen framework and a very smooth (root mean square = 0.29 nm) surface. Second, we induced Fermi level depinning by introducing a semimetal bismuth (Bi) contact with a low density of states (DOS) at the Fermi level to suppress the metal-induced gap state (MIGS). Through these two strategies, the SnS2 FET obtained high μFE (60.5 cm2V-1s−1), the SS theoretical limit of 60 mV/dec, negligible Schottky barrier height, high normalized on-current (IonL/W) of 90.6 μA, and high Ion/Ioff of 3 × 107, demonstrating that SnS2 can be re-evaluated as a potentially effective 2D channel material. © 2023 Elsevier B.V. -
dc.language English -
dc.publisher Elsevier B.V. -
dc.title Unlocking performance potential of two-dimensional SnS2 transistors with solution-processed high-k Y:HfO2 film and semimetal bismuth contact -
dc.type Article -
dc.identifier.doi 10.1016/j.apsusc.2023.156577 -
dc.identifier.wosid 000934271100001 -
dc.identifier.scopusid 2-s2.0-85147547045 -
dc.identifier.bibliographicCitation Applied Surface Science, v.617 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Tin disulfide (SnS2) -
dc.subject.keywordAuthor Yttrium-doped hafnium dioxide (Y:HfO2) -
dc.subject.keywordAuthor Bismuth (Bi) -
dc.subject.keywordAuthor Fermi level pinning -
dc.subject.keywordAuthor Field-effect transistor -
dc.subject.keywordAuthor Schottky barrier -
dc.subject.keywordPlus INVERSION LAYER MOBILITY -
dc.subject.keywordPlus FIELD-EFFECT TRANSISTORS -
dc.subject.keywordPlus MONOLAYER SNS2 -
dc.subject.keywordPlus SI MOSFETS -
dc.subject.keywordPlus MOS2 -
dc.subject.keywordPlus THIN -
dc.subject.keywordPlus UNIVERSALITY -
dc.subject.keywordPlus RESISTANCE -
dc.citation.title Applied Surface Science -
dc.citation.volume 617 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE