Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Kim, Duhee -
dc.contributor.author Hong, Nari -
dc.contributor.author Hong, Woongki -
dc.contributor.author Lee, Junhee -
dc.contributor.author Bissannagari, Murali -
dc.contributor.author Cho, Youngjae -
dc.contributor.author Kwon, Hyuk-Jun -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Kang, Hongki -
dc.date.accessioned 2023-06-09T11:10:20Z -
dc.date.available 2023-06-09T11:10:20Z -
dc.date.created 2023-05-04 -
dc.date.issued 2023-04 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/45969 -
dc.description.abstract Recently, interest in transparent electrodes has been increasing in biomedical engineering applications for such as electro-optical hybrid neuro-technologies. However, conventional photolithography-based electrode fabrication methods have limited design customization and large-area applicability. For biomedical engineering applications, it is crucial that we can easily customize the electrode design for different patients over a large body area. In this paper, we propose a novel method to fabricate customization-friendly, transparent, ultrathin, gold microelectrodes using inkjet printing technology. Unlike with typical direct printing of conductive inks, we inkjet-printed a polymer nucleation-inducing seed layer, followed by mask-less vacuum deposition of ultrathin gold (<6 nm) to produce selectively, high-transparency electrodes in the predefined shapes of the inkjet-printed polymer. Owing to the design flexibility of inkjet printing, the transparent ultrathin gold electrodes can be highly efficient in design customization over a large area. Simultaneously, a layer of nonconductive gold islands is formed in the nonprinted region, and this nanostructured layer can implement a photothermal effect that offers versatility for novel biomedical applications. As a demonstration of the effectiveness of these transparent electrodes, and the facile implementation of the photothermal effect for biomedical applications, we successfully fabricated transparent resistive temperature detectors. We used these to directly sense the photothermal effect and to demonstrate their bioimaging capabilities. © 2023 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Inkjet-Printed Polyelectrolyte Seed Layer-Based, Customizable, Transparent, Ultrathin Gold Electrodes and Facile Implementation of Photothermal Effect -
dc.type Article -
dc.identifier.doi 10.1021/acsami.3c01160 -
dc.identifier.wosid 000972020700001 -
dc.identifier.scopusid 2-s2.0-85152700461 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.15, no.16, pp.20508 - 20519 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor Transparent electrode -
dc.subject.keywordAuthor Inkjet printing -
dc.subject.keywordAuthor Ultrathin metal thin film -
dc.subject.keywordAuthor Polyelectrolyte -
dc.subject.keywordAuthor nucleation inducing seed layer -
dc.subject.keywordAuthor Photothermal effect -
dc.subject.keywordPlus FLEXIBLE GLASS -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus FILMS -
dc.subject.keywordPlus ARRAY -
dc.citation.endPage 20519 -
dc.citation.number 16 -
dc.citation.startPage 20508 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE