Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Baik, Seunghun -
dc.contributor.author Jeong, Heejae -
dc.contributor.author Park, Geuntae -
dc.contributor.author Kang, Hongki -
dc.contributor.author Jang, Jae Eun -
dc.contributor.author Kwon, Hyuk-Jun -
dc.date.accessioned 2023-08-28T16:10:26Z -
dc.date.available 2023-08-28T16:10:26Z -
dc.date.created 2023-07-08 -
dc.date.issued 2023-11 -
dc.identifier.issn 0169-4332 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/46329 -
dc.description.abstract This study presents a laser activation process (LAP) for germanium (Ge) to improve the electrical performance of n-type Ge devices. The LAP highly activated the dopant and created a shallow junction in Ge. We also investigated a triple contact of titanium (Ti)/nickel (Ni) nano-island/Ge to reduce contact resistivity and enhance the tunneling current. The results showed that the LAP with a fluence of 140 mJ/cm2 effectively activated the dopant, resulting in a high forward current density and a low ideality factor of the n+-p junction diode. The triple contact of Ti/Ni nano-island/Ge showed the lowest specific contact resistivity, indicating an increase in the tunneling current. The Ni nano-island contact showed the best overall electrical performance, attributed to the boosted electric field and the lower density of states at the interface. The results show that combining multiple approaches, including the optimized laser activation process and triple contact formation, can significantly reduce the contact resistance on n-type Ge, providing a promising approach for improving performance. -
dc.language English -
dc.publisher Elsevier BV -
dc.title Reducing Specific Contact Resistivity for n-type Germanium using Laser Activation Process and Nano-island Formation -
dc.type Article -
dc.identifier.doi 10.1016/j.apsusc.2023.157967 -
dc.identifier.wosid 001043810700001 -
dc.identifier.scopusid 2-s2.0-85165411804 -
dc.identifier.bibliographicCitation Applied Surface Science, v.638 -
dc.description.isOpenAccess TRUE -
dc.subject.keywordAuthor Ge -
dc.subject.keywordAuthor Phosphorus -
dc.subject.keywordAuthor CMOS -
dc.subject.keywordAuthor Laser activation -
dc.subject.keywordAuthor Triple contact -
dc.subject.keywordAuthor Specific contact resistivity -
dc.subject.keywordPlus SHALLOW JUNCTION FORMATION -
dc.subject.keywordPlus PHOSPHORUS DIFFUSION -
dc.subject.keywordPlus DOPING PROCESS -
dc.subject.keywordPlus GATE-STACK -
dc.subject.keywordPlus GE -
dc.subject.keywordPlus IMPLANTATION -
dc.subject.keywordPlus EXTRACTION -
dc.subject.keywordPlus RESISTANCE -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus TITANIUM -
dc.citation.title Applied Surface Science -
dc.citation.volume 638 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE