Cited time in webofscience Cited time in scopus

Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process

Title
Nonvolatile flash memory device with ferroelectric blocking layer via in situ ALD process
Author(s)
Kim, DongsuSong, Chong-MyeongHeo, Su JinPyo, GoeunKim, DonghaLee, Ji HwanPark, Kyung-HoLee, ShinbuhmKwon, Hyuk-JunJang, Jae Eun
Issued Date
2023-07
Citation
Applied Physics Letters, v.123, no.4
Type
Article
Keywords
FLOATING-GATECHARGEEVOLUTIONSILICONAL2O3
ISSN
0003-6951
Abstract
To improve performances of nonvolatile charge trap flash memory devices, we propose an in situ Hf0.5Zr0.5O2 (HZO)/HfO2/Al2O3 stacked structure, which is compatible for Si with the metal-oxide-semiconductor (MOS) process based on all atomic layer deposition. Since the appropriate bandgap difference between Al2O3 and HfO2, stable charge trap operation is achieved. High-quality ferroelectric HZO film characteristics were showed by minimizing defects and Si diffusion through the sub-layer of Al2O3/HfO2. Therefore, HZO as a blocking layer enhances the memory performance of the charge trap structure due to its specific polarization effect. The proposed device has the high polarization characteristics of HZO (2Pr > 20 μ C/cm2) along with a MOS-cap window (>4 V), good retention capability (>10 years), fast program/erase response operation times (<200 μ s ), and strong durability (>105 cycles) while operating as a form of single level cell. By comparing Al2O3 and ferroelectric HZO as a blocking layer of the charge trap device, we confirmed that the HZO/HfO2/Al2O3 multi-layer structure had excellent characteristics according to various memory performance indicators. Our proposed high-performance charge trap flash memory can be employed in various applications, including Si-based three-dimensional structures with artificial intelligence systems. © 2023 Author(s).
URI
http://hdl.handle.net/20.500.11750/47687
DOI
10.1063/5.0123608
Publisher
American Institute of Physics

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE