Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Su Yeong -
dc.contributor.author Yun, Won Seok -
dc.contributor.author Lee, J. D. -
dc.date.accessioned 2018-01-25T01:06:08Z -
dc.date.available 2018-01-25T01:06:08Z -
dc.date.created 2017-08-09 -
dc.date.issued 2017-03 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/5015 -
dc.description.abstract Schottky barrier height and carrier polarity are seminal concepts for a practical device application of the interface between semiconductor and metal electrode. Investigation of those concepts is usually made by a conventional method such as the Schottky-Mott rule, incorporating the metal work function and semiconductor electron affinity, or the Fermi level pinning effect, resulting from the metal-induced gap states. Both manners are, however, basically applied to the bulk semiconductor metal contacts. To explore few-layer black phosphorus metal contacts far from the realm of bulk, we propose a new method to determine the Schottky barrier by scrutinizing the layer-by-layer phosphorus electronic structure from the first-principles calculation combined with the state-of-the-art band unfolding technique. In this study, using the new method, we calculate the Schottky barrier height and determine the contact polarity of Ti, Sc, and Al metal contacts to few-layer (mono-, bi-, tri-, and quadlayer) black phosphorus. This gives a significant physical insight toward the utmost layer-by-layer manipulation of electronic properties of few-layer semiconductor metal contacts. © 2017 American Chemical Society. -
dc.publisher American Chemical Society -
dc.title New Method to Determine the Schottky Barrier in Few-Layer Black Phosphorus Metal Contacts -
dc.type Article -
dc.identifier.doi 10.1021/acsami.7b00357 -
dc.identifier.scopusid 2-s2.0-85014266672 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.9, no.8, pp.7873 - 7877 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor black phosphorus metal contacts -
dc.subject.keywordAuthor new method -
dc.subject.keywordAuthor Schottky barrier height -
dc.subject.keywordAuthor contact polarity -
dc.subject.keywordAuthor first-principles calculation -
dc.subject.keywordAuthor band unfolding -
dc.subject.keywordPlus Augmented Wave Method -
dc.subject.keywordPlus Band Unfolding -
dc.subject.keywordPlus Black Phosphorus Metal Contacts -
dc.subject.keywordPlus Calculations -
dc.subject.keywordPlus Contact Polarity -
dc.subject.keywordPlus Electron Affinity -
dc.subject.keywordPlus Electronic Properties -
dc.subject.keywordPlus Electronic Structure -
dc.subject.keywordPlus Field Effect Transistors -
dc.subject.keywordPlus First Principles Calculation -
dc.subject.keywordPlus Interfaces -
dc.subject.keywordPlus Metal Contacts -
dc.subject.keywordPlus Metals -
dc.subject.keywordPlus Mobility -
dc.subject.keywordPlus Monolayer -
dc.subject.keywordPlus New Method -
dc.subject.keywordPlus Phosphorus -
dc.subject.keywordPlus Scandium -
dc.subject.keywordPlus Schottky Barrier Diodes -
dc.subject.keywordPlus Schottky Barrier Height -
dc.subject.keywordPlus Schottky Barrier Heights -
dc.subject.keywordPlus Semiconductor -
dc.subject.keywordPlus Semiconductor Metal Boundaries -
dc.citation.endPage 7877 -
dc.citation.number 8 -
dc.citation.startPage 7873 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 9 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Light and Matter Theory Laboratory 1. Journal Articles
Division of Nanotechnology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE