Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lei, Yusheng -
dc.contributor.author Li, Yuheng -
dc.contributor.author Lu, Chengchangfeng -
dc.contributor.author Yan, Qizhang -
dc.contributor.author Wu, Yilei -
dc.contributor.author Babbe, Finn -
dc.contributor.author Gong, Huaxin -
dc.contributor.author Zhang, Song -
dc.contributor.author Zhou, Jiayun -
dc.contributor.author Wang, Ruotao -
dc.contributor.author Zhang, Ruiqi -
dc.contributor.author Chen, Yimu -
dc.contributor.author Tsai, Hsinhan -
dc.contributor.author Gu, Yue -
dc.contributor.author Hu, Hongjie -
dc.contributor.author Lo, Yu-Hwa -
dc.contributor.author Nie, Wanyi -
dc.contributor.author Lee, Taeyoon -
dc.contributor.author Luo, Jian -
dc.contributor.author Yang, Kesong -
dc.contributor.author Jang, Kyung-In -
dc.contributor.author Xu, Sheng -
dc.date.accessioned 2022-11-03T08:30:11Z -
dc.date.available 2022-11-03T08:30:11Z -
dc.date.created 2022-09-08 -
dc.date.issued 2022-08 -
dc.identifier.issn 0028-0836 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17044 -
dc.description.abstract Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An−1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl−, Br−, I−) with periodic inorganic–organic structures have shown promising stability and hysteresis-free electrical performance1–6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomlyoriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn−1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC). © 2022, The Author(s), under exclusive licence to Springer Nature Limited. -
dc.language English -
dc.publisher Nature Publishing Group -
dc.title Perovskite superlattices with efficient carrier dynamics -
dc.type Article -
dc.identifier.doi 10.1038/s41586-022-04961-1 -
dc.identifier.wosid 000838658900014 -
dc.identifier.scopusid 2-s2.0-85135796520 -
dc.identifier.bibliographicCitation Nature, v.608, no.7922, pp.317 - 323 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus HYBRID PEROVSKITES -
dc.subject.keywordPlus LIMIT -
dc.citation.endPage 323 -
dc.citation.number 7922 -
dc.citation.startPage 317 -
dc.citation.title Nature -
dc.citation.volume 608 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.type.docType Article -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Robotics and Mechatronics Engineering Bio-integrated Electronics Lab 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE