Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Gwak, S. -
dc.contributor.author Ryu, J. -
dc.contributor.author Kim, H. -
dc.contributor.author Yu, H.-H. -
dc.contributor.author Kim, C.-M. -
dc.contributor.author Yi, C.-H. -
dc.date.accessioned 2022-11-30T17:40:11Z -
dc.date.available 2022-11-30T17:40:11Z -
dc.date.created 2022-09-08 -
dc.date.issued 2022-08 -
dc.identifier.issn 0031-9007 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/17205 -
dc.description.abstract An experimental verification of an exceptional point (EP) in a stand-alone chaotic microcavity is a tough issue because as deformation parameters are fixed the traditional frequency analysis methods cannot be applied any more. Through numerical investigations with an asymmetric Reuleaux triangle microcavity (ARTM), we find that the eigenvalue difference of paired modes can approach near-zero regardless of nonorthogonality of the modes. In this case, for a definite verification of EPs in experiments, wave function coalescence should be confirmed. For this, we suggest the method of exploiting correlation of far-field patterns (FFPs), which is directly related to spatial mode patterns. In an ARTM, we demonstrate that the FFP correlation of paired modes can be used to confirm wave function coalescence when an eigenvalue difference approaches near zero. -
dc.language English -
dc.publisher American Physical Society -
dc.title Far-Field Correlations Verifying Non-Hermitian Degeneracy of Optical Modes -
dc.type Article -
dc.identifier.doi 10.1103/PhysRevLett.129.074101 -
dc.identifier.scopusid 2-s2.0-85136188666 -
dc.identifier.bibliographicCitation Physical Review Letters, v.129, no.7 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordPlus EXCEPTIONAL POINTS -
dc.subject.keywordPlus MICROCAVITY -
dc.subject.keywordPlus RESONANCE -
dc.citation.number 7 -
dc.citation.title Physical Review Letters -
dc.citation.volume 129 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Micro Laser Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE