Cited time in webofscience Cited time in scopus

Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection

Title
Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection
Author(s)
Allabergenov, BunyodYun, SanghunChoi, Byeongdae
Issued Date
2022-10
Citation
ACS Applied Materials & Interfaces, v.14, no.42, pp.47841 - 47852
Type
Article
Author Keywords
direct current sputterRGB reflectionthermochromic thin filmsvanadium dioxidephase transition
Keywords
PHASE-TRANSITIONVO2 FILMSTEMPERATUREXPS
ISSN
1944-8244
Abstract
Vanadium dioxide (VO2)-based thin films have received considerable attention in recent years due to their superior performance in creating next-generation color-rendering materials. The near-room-temperature metal-insulator transition of VO2 promises the advantage of active color tuning in the visible wavelength range. Although various results of dynamic color generation combined with plasmonic nanostructures are currently being investigated, so far, very few studies have addressed the visible-light optical performance of pure VO2 thin films prepared on conventional substrates. This article shows in detail the phase transition behavior of VO2 thin films in the visible wavelength range of 400-750 nm prepared on glass with subsequent annealing at temperatures of 350, 400, 450, and 500 degrees C. The results show an anomalous phase transition reducing the overall RGB reflectivity correlated with the crystallization behavior of the VO2 phase and scattering effect. The sample annealed at 350 degrees C shows the smallest phase transition at 47 degrees C, correlating with a crystallite size of 7 nm. The blue band reflectivity anomaly after annealing at 450 degrees C was considered an effect of the secondary reflection. The results of this research could play a huge role in the production of active switching photonic devices, color-managed reflectors, and temperature indicators. © 2022 American Chemical Society. All rights reserved.
URI
http://hdl.handle.net/20.500.11750/17328
DOI
10.1021/acsami.2c11366
Publisher
American Chemical Society
Related Researcher
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Division of Electronics & Information System 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE