Browsing by Titles

Showing results 1 to 6 of 6

  • Lee, Junyoung
  • Chang, Pyung Hun
  • Yu, Byeong Gi
  • Jin, Maolin
  • 2020-09
  • Lee, Junyoung. (2020-09). An Adaptive PID Control for Robot Manipulators Under Substantial Payload Variations. doi: 10.1109/ACCESS.2020.3014348
  • Institute of Electrical and Electronics Engineers Inc.
  • View : 507
  • Download : 0
  • Lee, Junyoung
  • Chang, Pyung Hun
  • Yu, Byeonggi
  • Seo, Kap-Ho
  • Jin, Maolin
  • 2020-09
  • Lee, Junyoung. (2020-09). An Effective Adaptive Gain Dynamics for Time-Delay Control of Robot Manipulators. doi: 10.1109/ACCESS.2020.3027858
  • Institute of Electrical and Electronics Engineers Inc.
  • View : 380
  • Download : 0
  • Kwon, Hyukjun
  • Kim, Kangwon
  • Lee, Junyoung
  • Lee, Hyunsei
  • Kim, Jiseung
  • Kim, Jinhyung
  • Kim, Taehyung
  • Kim, Yongnyeon
  • Ni, Yang
  • Imani, Mohsen
  • et al
  • 2024-05-14
  • Kwon, Hyukjun. (2024-05-14). Brain-Inspired Hyperdimensional Computing in the Wild: Lightweight Symbolic Learning for Sensorimotor Controls of Wheeled Robots. IEEE International Conference on Robotics and Automation, 5176–5182. doi: 10.1109/ICRA57147.2024.10610176
  • IEEE Robotics and Automation Society
  • View : 55
  • Download : 0
  • Lee, Junyoung
  • Kim, Seohyun
  • Jang, Shinhyoung
  • Park, Jongho
  • Kim, Yeseong
  • 2025-06
  • Proceedings of the ACM on Measurement and Analysis of Computing Systems, v.9, no.2, pp.43 - 45
  • Association for Computing Machinery
  • View : 212
  • Download : 0
  • 2025-04-02
  • Lee, Junyoung. (2025-04-02). Late Breaking Results: Dynamically Scalable Pruning for Transformer-Based Large Language Models. Design Automation and Test in Europe Conference, 1–2. doi: 10.23919/DATE64628.2025.10992978
  • Institute of Electrical and Electronics Engineers Inc.
  • View : 233
  • Download : 0
  • Park, Jongho
  • Kwon, Hyuk-jun
  • Kim, Seowoo
  • Lee, Junyoung
  • Ha, Minho
  • Lim, Euicheol
  • Imani, Mohsen
  • Kim, Yeseong
  • 2022-07-14
  • Park, Jongho. (2022-07-14). QuiltNet: Efficient Deep Learning Inference on Multi-Chip Accelerators Using Model Partitioning. Design Automation Conference, 1159–1164. doi: 10.1145/3489517.3530589
  • Association for Computing Machinery
  • View : 130
  • Download : 0
1