Detail View

Multifarious Transit Gates for Programmable Delivery of Bio-functionalized Matters
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

DC Field Value Language
dc.contributor.author Hu, Xinghao -
dc.contributor.author Torati, Sri Ramulu -
dc.contributor.author Kim, Hyeonseol -
dc.contributor.author Yoon, Jonghwan -
dc.contributor.author Lim, Byeonghwa -
dc.contributor.author Kim, Kunwoo -
dc.contributor.author Sitti, Metin -
dc.contributor.author Kim, CheolGi -
dc.date.accessioned 2019-06-25T02:23:57Z -
dc.date.available 2019-06-25T02:23:57Z -
dc.date.created 2019-05-28 -
dc.date.issued 2019-07 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10048 -
dc.description.abstract Programmable delivery of biological matter is indispensable for the massive arrays of individual objects in biochemical and biomedical applications. Although a digital manipulation of single cells has been implemented by the integrated circuits of micromagnetophoretic patterns with current wires, the complex fabrication process and multiple current operation steps restrict its practical application for biomolecule arrays. Here, a convenient approach using multifarious transit gates is proposed, for digital manipulation of biofunctionalized microrobotic particles that can pass through the local energy barriers by a time-dependent pulsed magnetic field instead of multiple current wires. The multifarious transit gates including return, delay, and resistance linear gates, as well as dividing, reversed, and rectifying T-junction gates, are investigated theoretically and experimentally for the programmable manipulation of microrobotic particles. The results demonstrate that, a suitable angle of the gating field at a suitable time zone is crucial to implement digital operations at integrated multifarious transit gates along bifurcation paths to trap microrobotic particles in specific apartments, paving the way for flexible on-chip arrays of biomolecules and cells. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Multifarious Transit Gates for Programmable Delivery of Bio-functionalized Matters -
dc.type Article -
dc.identifier.doi 10.1002/smll.201901105 -
dc.identifier.wosid 000477931100008 -
dc.identifier.scopusid 2-s2.0-85065295137 -
dc.identifier.bibliographicCitation Hu, Xinghao. (2019-07). Multifarious Transit Gates for Programmable Delivery of Bio-functionalized Matters. Small, 15(28). doi: 10.1002/smll.201901105 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor biofunctionalization -
dc.subject.keywordAuthor micromagnets -
dc.subject.keywordAuthor microrobotic particles -
dc.subject.keywordAuthor on-chip arrays -
dc.subject.keywordAuthor programmable gating -
dc.subject.keywordPlus ON-CHIP MANIPULATION -
dc.subject.keywordPlus MAGNETIC BEADS -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus MICROPARTICLES -
dc.subject.keywordPlus TWEEZERS -
dc.citation.number 28 -
dc.citation.title Small -
dc.citation.volume 15 -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.type.docType Article -
Show Simple Item Record

File Downloads

  • There are no files associated with this item.

공유

qrcode
공유하기

Related Researcher

김철기
Kim, CheolGi김철기

Department of Physics and Chemistry

read more

Total Views & Downloads