Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Hu, Xinghao ko
dc.contributor.author Torati, Sri Ramulu ko
dc.contributor.author Kim, Hyeonseol ko
dc.contributor.author Yoon, Jonghwan ko
dc.contributor.author Lim, Byeonghwa ko
dc.contributor.author Kim, Kunwoo ko
dc.contributor.author Sitti, Metin ko
dc.contributor.author Kim, CheolGi ko
dc.date.accessioned 2019-06-25T02:23:57Z -
dc.date.available 2019-06-25T02:23:57Z -
dc.date.created 2019-05-28 -
dc.date.issued 2019-07 -
dc.identifier.citation Small, v.15, no.28 -
dc.identifier.issn 1613-6810 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/10048 -
dc.description.abstract Programmable delivery of biological matter is indispensable for the massive arrays of individual objects in biochemical and biomedical applications. Although a digital manipulation of single cells has been implemented by the integrated circuits of micromagnetophoretic patterns with current wires, the complex fabrication process and multiple current operation steps restrict its practical application for biomolecule arrays. Here, a convenient approach using multifarious transit gates is proposed, for digital manipulation of biofunctionalized microrobotic particles that can pass through the local energy barriers by a time-dependent pulsed magnetic field instead of multiple current wires. The multifarious transit gates including return, delay, and resistance linear gates, as well as dividing, reversed, and rectifying T-junction gates, are investigated theoretically and experimentally for the programmable manipulation of microrobotic particles. The results demonstrate that, a suitable angle of the gating field at a suitable time zone is crucial to implement digital operations at integrated multifarious transit gates along bifurcation paths to trap microrobotic particles in specific apartments, paving the way for flexible on-chip arrays of biomolecules and cells. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim -
dc.language English -
dc.publisher Wiley-VCH Verlag -
dc.title Multifarious Transit Gates for Programmable Delivery of Bio-functionalized Matters -
dc.type Article -
dc.identifier.doi 10.1002/smll.201901105 -
dc.identifier.wosid 000477931100008 -
dc.identifier.scopusid 2-s2.0-85065295137 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Sitti, Metin -
dc.identifier.citationVolume 15 -
dc.identifier.citationNumber 28 -
dc.identifier.citationTitle Small -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordAuthor biofunctionalization -
dc.subject.keywordAuthor micromagnets -
dc.subject.keywordAuthor microrobotic particles -
dc.subject.keywordAuthor on-chip arrays -
dc.subject.keywordAuthor programmable gating -
dc.subject.keywordPlus ON-CHIP MANIPULATION -
dc.subject.keywordPlus MAGNETIC BEADS -
dc.subject.keywordPlus CELLS -
dc.subject.keywordPlus MICROPARTICLES -
dc.subject.keywordPlus TWEEZERS -
dc.contributor.affiliatedAuthor Kim, CheolGi -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Lab for NanoBio-Materials & SpinTronics(nBEST) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE