Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 홍승태 -
dc.contributor.author Jooeun Hyoung -
dc.date.accessioned 2019-08-22T16:01:25Z -
dc.date.available 2019-08-22T16:01:25Z -
dc.date.issued 2019 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000217442 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/10474 -
dc.description Vanadium oxides, Lithium battery, Potassium-ion battery, Calcium-ion battery, Crystallography, Structural determination, Powder X-ray diffraction -
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents Abstract i
List of contents iv
List of tables ix
List of figures xi
Ⅰ. INTRODUCTION 1
Ⅱ. THEORY
2.1 Electrochemistry 14
2.1.1 Electromotive Force 14
2.1.2 Electrode potential 15
2.1.3 Energy storage 16
2.1.4 Types of battery 17
2.1.5 Components of battery 17
2.1.6 Various electrochemical measurement techniques 18
2.1.6.1 Cyclic voltammetry 19
2.1.6.2 Chronopotentiometry 19
2.1.6.3 Distribution of intercalation and adsorption in working electrode 20
2.1.6.4 GITT and Diffusion coefficients 23
2.2 Crystal Structure Determination from Powder XRD 25

2.2.1 Ab initio Structure Determination via Powder XRD data 26
2.3 References 32
Ⅲ. V4O9 as new high-performance Lithium Battery Cathode
3.1 Introduction 35
3.2 Experimental 36
3.2.1 Materials Synthesis 36
3.2.2 Materials Characterization 37
3.2.3 Structural characterization 37
3.2.4 Electrochemical Characterization 38
3.3 Results and discussion 39
3.3.1 Structure and Morphology of micron & submicron sized V4O9 39
3.3.2 Modified electrolyte 39
3.3.3 Electrochemical performance 40
3.3.4 Vanadium dissolution associated with electrolyte 42
3.3.5 Working mechanism 42
3.4 Conclusions 43
3.5 References 66
Ⅳ. Electrochemical Exchange Reaction Mechanism and Role of Additive Water to Stabilize Structure of VOPO4·2H2O as a Cathode Material for Potassium-Ion Batteries
4.1 Introduction 70
4.2 Experimental 72
4.2.1 Synthesis 72
4.2.2 Material Characterization 72
4.2.3 Electrochemical Characterization 72
4.2.4 Operando XRD measurement 73
4.3 Results and discussion 73
4.3.1 Structural vs crystal water of VOPO4·2H2O 73
4.3.2 Characterization of VOPO4·2H2O 74
4.3.3 Two contrasting (anhydrous vs. wet organic) electrolytes 74
4.3.4 Activated carbon as the counter electrode 74
4.3.5 VOPO4·2H2O in the anhydrous electrolyte 75
4.3.6 VOPO4·2H2O in the wet electrolyte 77
4.3.7 X-ray Photoelectron Spectroscopic Analysis 78
4.3.8 Remarks on unanswered questions 78
4.4 Conclusions 79
4.5 References 98
Ⅴ. Activation of calcium intercalation by silver extraction in silver vanadium bronze for calcium-ion batteries
5.1 Introduction 102
5.2 Experimental 103
5.2.1 Synthesis of silver vanadium bronze, β-Ag0.33V2O5 103
5.2.2 Materials Characterization 104
5.2.3 Electrochemical Characterization 104
5.2.4 In-situ XRD measurement 105
5.2.5 Bond Valence Sum Maps 105
5.2.6 Galvanostatic intermittent titration technique and Diffusion coefficients 105
5.3 Results and discussion 106
5.3.1 Characterization of β-Ag0.33V2O5 106
5.3.2 Electrochemical properties 106
5.3.3 Structural evolution and calcium-ion intercalation 107
5.3.4 X-ray Photoelectron Spectroscopic Analysis 108
5.4 Conclusions 108
5.5 References 124
Ⅵ. Side works: Crystal structure of calcium perchlorate anhydrate, Ca(ClO4)2, from X-ray powder diffraction data
6.1 Chemical context 127
6.2 Structural commentary 127
6.3 Synthesis and crystallization 128
6.4 Refinement 128
6.5 References 136
Ⅶ. Side works: Crystal structure of strontium perchlorate anhydrate, Sr(ClO4)2, from laboratory powder X-ray diffraction data
7.1 Chemical context 137
7.2 Structural commentary 137
7.3 Synthesis and crystallization 138
7.4 Refinement 138
7.5 References 146
Summary (in Korean) 148
-
dc.format.extent 169 -
dc.language eng -
dc.publisher DGIST -
dc.source /home/dspace/dspace53/upload/200000217442.pdf -
dc.title Synthesis, electrochemical and structural characterization of vanadium-based oxides as new battery electrode materials -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.200000217442 -
dc.description.degree Doctor -
dc.contributor.department Department of Energy Science and Engineering -
dc.contributor.coadvisor Jae Hyun Kim -
dc.date.awarded 2019-08 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.ED 형76 201908 -
dc.date.accepted 2019-07-01 -
dc.contributor.alternativeDepartment 에너지공학전공 -
dc.embargo.liftdate 2024-08-31 -
dc.contributor.affiliatedAuthor Hong, Seung-Tae -
dc.contributor.affiliatedAuthor Hyoung, Jooeun -
dc.contributor.affiliatedAuthor Kim, Jae Hyun -
dc.contributor.alternativeName 김재현 -
dc.contributor.alternativeName 형주은 -
dc.contributor.alternativeName Seung-Tae Hong -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE