Detail View
Synthesis of Cyclopentadithiophene-Diketopyrrolopyrrole Donor-Acceptor Copolymers for High-Performance Nonvolatile Floating Gate Memory Transistors with Long Retention Time
WEB OF SCIENCE
SCOPUS
- Title
- Synthesis of Cyclopentadithiophene-Diketopyrrolopyrrole Donor-Acceptor Copolymers for High-Performance Nonvolatile Floating Gate Memory Transistors with Long Retention Time
- Issued Date
- 2020-01
- Citation
- Jeon, Soyeon. (2020-01). Synthesis of Cyclopentadithiophene-Diketopyrrolopyrrole Donor-Acceptor Copolymers for High-Performance Nonvolatile Floating Gate Memory Transistors with Long Retention Time. ACS Applied Materials & Interfaces, 12(2), 2743–2752. doi: 10.1021/acsami.9b20307
- Type
- Article
- Author Keywords
- organic field-effect transistors ; donor-acceptor copolymers ; floating-gate ; flash memory ; high-performance ; bias stability
- Keywords
- FIELD-EFFECT TRANSISTORS ; POLYMER SEMICONDUCTORS ; ORGANIC SEMICONDUCTORS ; CHARGE-TRANSPORT ; BUILDING-BLOCKS ; MOBILITY ; STABILITY ; DISORDER ; DENSITY
- ISSN
- 1944-8244
- Abstract
-
Organic flash memories that employ solution-processed polymer semiconductors preferentially require internal stability of their active channel layers. In this paper, a series of new donor-acceptor copolymers based on cyclopentadithiophene (CDT) and diketopyrrolopyrrole (DPP) are synthesized to obtain high performance and operational stability of nonvolatile floating-gate memory transistors with various additional donor units including thiophene, thiophene-vinylene-thiophene (CDT-DPP-TVT), selenophene, and selenophene-vinylene-selenophene. Detailed analyses on the photophysical, two-dimensional grazing incident X-ray diffraction, and bias stress stability are discussed, which reveal that the CDT-DPP-TVT exhibits excellent bias stress stability over 105 s. To utilize the robust nature of CDT-DPP-TVT, floating-gate transistors are fabricated by embedding Au nanoparticles between Cytop layers as a charge storage site. The resulting memory devices reveal bistable current states with high on/off current ratio larger than 104 and each state can be distinguished for more than 1 year, indicating a long retention time. Moreover, repetitive writing-reading-erasing-reading test clearly supports the reproducible memory operation with reversible and reliable electrical responses. All these results suggest that the internal stability of CDT-DPP-TVT makes this copolymer a promising material for application in reliable organic flash memory. Copyright © 2019 American Chemical Society.
더보기
- Publisher
- American Chemical Society
File Downloads
- There are no files associated with this item.
공유
Total Views & Downloads
???jsp.display-item.statistics.view???: , ???jsp.display-item.statistics.download???:
