Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor 김철기 -
dc.contributor.author Sung Joon Kim -
dc.date.accessioned 2020-06-22T16:02:11Z -
dc.date.available 2020-06-22T16:02:11Z -
dc.date.issued 2020 -
dc.identifier.uri http://dgist.dcollection.net/common/orgView/200000283136 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/11990 -
dc.description In Vitro Diagnosis, PHR sensor, Alzheimer's disease, β-amyloid -
dc.description.statementofresponsibility prohibition -
dc.description.tableofcontents Ⅰ. Introduction 1
Ⅱ. Theory 7
2.1. Theory of the Planar Hall effect 7
2.1.1. Theory of the cross type Planar Hall resistance sensor 7
2.1.2. Magnetic energy 10
2.1.2.1. Zeeman energy 11
2.1.2.2. Uniaxial energy 11
2.1.2.3. Exchange anisotropy energy 11
2.1.2.4. Shape anisotropy energy 12
2.1.2.5. Total energy 12
2.2. Theory of the PHR sensor signal from magnetic labels 14
2.2.1. Single magnetic label signal 14
2.2.2. Self-field detection 18
2.3. Antibody-antigen reaction 21
Ⅲ. Experimental techniques 27
3.1. DC/RF magnetron sputtering 27
3.2. Photolithography 30
3.3. Measurement system 37
3.3.1. Magnetization measurement 37
3.3.2. Magnetization measurement 38
Ⅳ. Result 39
4.1. Equisensitive adjustment of planar Hall effect sensor’s operating field range by material and thickness variation of active layers 39
4.1.1. Introduction 39
4.1.2. Experimental procedures 41
4.1.3. Result and discussion 44
4.1.3.1. Effect of Mo addition NiFe on field range and sensitivity of PHE sensor, based on NiFe/IrMn bilayers 44
4.1.3.2. Reduction of power consumption by thickness variation of non-magnetic spacer and capping layers, maintaining the PHE sensitivity at the same value 52
4.1.4. Conclusion 56
4.2. Performance validation of planar Hall resistance biosensor through beta-amyloid biomarker 57
4.2.1. Optimization of PHR sensor structure 57
4.2.1.1. Bilayer 57
4.2.1.2. Trilayer 58
4.2.1.3. Optimization of trilayer 60
4.2.2. Detection through beta-amyloid biomarker 63
4.2.2.1. Surface chemistry of sandwich binding process 63
4.2.3. Compare the signal quality between the 1f mode and 2f mode 65
4.2.4. Real-time detection by 2f mode through the beta-amyloid 70
4.2.5. Conclusion 73
요약문 78
-
dc.format.extent 86 -
dc.language eng -
dc.publisher DGIST -
dc.title Development of Planar Hall resistance sensor for bio analytics -
dc.type Thesis -
dc.identifier.doi 10.22677/Theses.200000283136 -
dc.description.degree Doctor -
dc.contributor.department Emerging Materials Science -
dc.contributor.coadvisor Sung Bae Lee -
dc.date.awarded 2020-02 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.citation XT.MD 김54 202002 -
dc.date.accepted 2020-01-20 -
dc.contributor.alternativeDepartment 신물질과학전공 -
dc.embargo.liftdate 2023-01-02 -
dc.contributor.affiliatedAuthor Kim, CheolGi -
dc.contributor.affiliatedAuthor Kim, Sung Joon -
dc.contributor.affiliatedAuthor Lee, Sung Bae -
dc.contributor.alternativeName 김성준 -
dc.contributor.alternativeName 이성배 -
dc.contributor.alternativeName Cheol Gi Kim -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Theses Ph.D.

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE