Detail View

Fabrication of Ultra-Thin Photo-Multiplication Photodiode by Using a Non Fullerene-Based 2D Planar Small Molecular Semiconductor as an Efficient Optical Sensitizer
Citations

WEB OF SCIENCE

Citations

SCOPUS

Metadata Downloads

Title
Fabrication of Ultra-Thin Photo-Multiplication Photodiode by Using a Non Fullerene-Based 2D Planar Small Molecular Semiconductor as an Efficient Optical Sensitizer
Alternative Title
효율적인 광 증감 제로 비 풀러렌 기반 2D 평면형 소분자 반도체를 사용하여 초박형 광증 배 포토 다이오드 제작
DGIST Authors
Kumar, Neethipathi DeepanChung, Dae SungLee, Ju Hyuck
Advisor
정대성
Co-Advisor(s)
Ju Hyuck Lee
Issued Date
2020
Awarded Date
2020-02
Citation
Neethipathi Deepan Kumar. (2020). Fabrication of Ultra-Thin Photo-Multiplication Photodiode by Using a Non Fullerene-Based 2D Planar Small Molecular Semiconductor as an Efficient Optical Sensitizer. doi: 10.22677/Theses.200000286631
Type
Thesis
Description
Photo Multiplication, Photodetector, Organic Photodiode,High Detectivity, Optical Sensitizer
Abstract
In this work, we explore the possibility of using nonfullerene and a planar n-type small molecular semiconductor, 2,2′‐((2Z,2′Z)‐((4,4,9,9‐tetrahexyl‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(methanylylidene))bis(3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (IDIC) as an optical sensitizer to improve the EQE and to reduce the thickness of the photoactive layer to 70 nm. A key idea of this work is utilizing the unique photophysical properties of IDIC with an anisotropic electron transport. As is well known, contrary to spherical PCBMs (PC61BM and PC71BM) with an isotropic charge transport property, the 2D planar IDIC with an inherently anisotropic packing structure tends to hinder the formation of the effective electron percolation pathways. This is a very important requirement for the optical sensitizer of PM-OPDs because it leads to more efficient charge trapping. In addition, IDIC possesses a relatively higher absorption coefficient in the visible range compared to PC71BM, which can contribute to a higher photocurrent. Together with a deeper lowest unoccupied molecular orbital (LUMO) level of IDIC compared to PC71BM, all the mentioned photophysical properties of IDIC can be much more beneficial as optical sensitizers of the PM-OPDs. Layer-by-layer deposition of P3HT as a photoactive layer and IDIC as an optical sensitizer enables more effective PM operation, yielding high EQE exceeding 130,000% and specific detectivity over 1012 Jones at 150-nm-thick active layer. Furthermore, due to more facile spatial confinement of the charge carriers, the photoactive layer thickness was further decreased down to 70 nm while maintaining reasonably high EQE of 60,000% as well as specific detectivity over 1012 Jones. Physical origins of such synergetic effects of using IDIC as an optical sensitizer are fully discussed with various photophysical analyses in the forthcoming sections.
Table Of Contents
1 - Introduction 2
1.1 Introduction to PM based Photodetector 2
1.2 Mechanism – Photo Multiplication Type Photodetector 3
1.3 PM Type Photodetector – Advantages and Disadvantages 4
1.4 Recent Trends in PM type Photodiodes 5
1.5 Current Theses Work 7
2 – Experimental Section 9
2.1 Preparations 9
2.1.1 Material Preparations 9
2.1.2 Device Preparations 10
2.2 Characterizations 11
2.2.1 Material Characterization 11
2.2.2 Device Characterization 14
3 – Results and Discussions 17
4 – Conclusions 31
URI
http://dgist.dcollection.net/common/orgView/200000286631
http://hdl.handle.net/20.500.11750/11995
DOI
10.22677/Theses.200000286631
Degree
Master
Department
Energy Science&Engineering
Publisher
DGIST
Show Full Item Record

File Downloads

공유

qrcode
공유하기

Total Views & Downloads