WEB OF SCIENCE
SCOPUS
In this paper, we studied Yu-Shiba-Rusinov state in quantum confiment system and the local mag-netism of FeSe thin film using scanning tunneling microscipy (STM).
Magnetic impurity on conventional BCS superconductor leads impurity bound state which is called Yu-Shiba-Rusinov state. YSR states can hybridize with nearest atoms in the magnetic atomic chain, which form the YSR band. In the special condition, YSR band leads topological quantum phase transition, resulting in the Majorana zero mode (MZM) at the end of the chain. In this paper, we artifi-cially changed the density of state (DOS) at Fermi level (EF) by using the Ar-induced nano-cavities (AIC) in Pb(111) substrate. We confirmed that the YSR energy is influenced by DOS at EF, and it is re-stricted by the strength and sign of local impurity potential. In addition, we found that the ratio between YSR energy and Kondo energy is anomalously changed on AICs. And, we succeed to grow the Fe atomic chains on Pb(111) substrate. This system provides the platform to study the relationship between YSR band and DOS at EF.
In addition, we successfully grew FeSe film on Pb(111) which is S-wave superconductor. We demonstrated that the FeSe film possesses the S-wave superconductivity due to the proximity effect. The fact that S-wave Cooper pairs only respond to the magnetic impurity could realize the detection of local magnetism on FeSe film. Furthermore, we used the superconducting tip that improved considerable energy and spatial resolution. As a result, we clearly detected the local magnetism near the boundaries, intrinsic defects, and even near the non-magnetic impurities. The discovery of the induced magnetism near nonmagnetic ad-atoms brings significantly perceptual changes to the results of many experiments and analyzes that have been performed to confirm the pairing symmetry of FeSe superconductors. In addition, the induced magnetism indicates response to impurities near the magnetic quantum critical point. Morover, we found that the distribution of magnetism around the nonmagnetic atom has C2 sym-metry. This indicates that the FeSe film has a collinear anti-ferromagnetic order, according to the theo-retical description.