Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Lee, Mi-Young ko
dc.contributor.author Ringe, Stefan ko
dc.contributor.author Kim, Hyungjun ko
dc.contributor.author Kang, Seoktae ko
dc.contributor.author Kwon, Youngkook ko
dc.date.accessioned 2020-10-26T12:29:38Z -
dc.date.available 2020-10-26T12:29:38Z -
dc.date.created 2020-10-08 -
dc.date.issued 2020-09 -
dc.identifier.citation ACS Energy Letters, v.5, no.9, pp.2987 - 2994 -
dc.identifier.issn 2380-8195 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12432 -
dc.description.abstract Decades of electrochemical CO2 reduction research have led to established rules about the product selectivity, i.e., bare tin yields formic acid as the main product. Here, we present Sn nanoparticles supported on carbon nanotubes (CNTs) in a hollow fiber (Sn-CHF), which produce CO with 10 times higher selectivity than formate. Density functional theory calculations reveal that a strong interfacial field induced by the carbon support enhances the rate-limiting CO2 adsorption and thus CO production on Sn nanoparticles, whereas the field-insensitive formate and hydrogen production routes were completely suppressed and occurred mainly from carbon sites. Modification of the interfacial electric field via exchange of the electrolyte-containing cation from Li+ to Cs+ induces an unprecedented 2 orders of magnitude change in the CO current while keeping the other products almost unchanged. This work demonstrates how electrochemical selectivity rules can be modulated by controlling the interfacial field, thus opening up new windows for electrocatalyst design. Copyright © 2020 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Electric Field Mediated Selectivity Switching of Electrochemical CO2 Reduction from Formate to CO on Carbon Supported Sn -
dc.type Article -
dc.identifier.doi 10.1021/acsenergylett.0c01387 -
dc.identifier.wosid 000571642600027 -
dc.identifier.scopusid 2-s2.0-85092274064 -
dc.type.local Article(Overseas) -
dc.type.rims ART -
dc.description.journalClass 1 -
dc.contributor.nonIdAuthor Lee, Mi-Young -
dc.contributor.nonIdAuthor Kim, Hyungjun -
dc.contributor.nonIdAuthor Kang, Seoktae -
dc.contributor.nonIdAuthor Kwon, Youngkook -
dc.identifier.citationVolume 5 -
dc.identifier.citationNumber 9 -
dc.identifier.citationStartPage 2987 -
dc.identifier.citationEndPage 2994 -
dc.identifier.citationTitle ACS Energy Letters -
dc.type.journalArticle Article -
dc.description.isOpenAccess N -
dc.subject.keywordPlus MESOPOROUS TIN OXIDE -
dc.subject.keywordPlus ELECTROCATALYTIC REDUCTION -
dc.subject.keywordPlus MECHANISTIC INSIGHTS -
dc.subject.keywordPlus PRODUCT SELECTIVITY -
dc.subject.keywordPlus ENHANCED ACTIVITY -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus EFFICIENCY -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus PROMOTER -
dc.contributor.affiliatedAuthor Ringe, Stefan -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Energy Science and Engineering Ab initio multi-scale engineering Lab(AIMS-E Lab) 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE