Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.author Song, Jungeun -
dc.contributor.author Kwon, Soyeong -
dc.contributor.author Kim, Bora -
dc.contributor.author Kim, Eunah -
dc.contributor.author Murthy, Lakshmi N. S. -
dc.contributor.author Lee, Taejin -
dc.contributor.author Hong, Inhae -
dc.contributor.author Lee, Byoung Hoon -
dc.contributor.author Lee, Sang Wook -
dc.contributor.author Choi, Soo Ho -
dc.contributor.author Kim, Ki Kang -
dc.contributor.author Cho, Chang-Hee -
dc.contributor.author Hsu, Julia W. P. -
dc.contributor.author Kim, Dong-Wook -
dc.date.accessioned 2021-01-22T06:54:32Z -
dc.date.available 2021-01-22T06:54:32Z -
dc.date.created 2020-11-13 -
dc.date.issued 2020-10 -
dc.identifier.issn 1944-8244 -
dc.identifier.uri http://hdl.handle.net/20.500.11750/12624 -
dc.description.abstract We prepared MoS2 monolayers on Au nanodot (ND) and nanohole (NH) arrays. Both these sample arrays exhibited enhanced photoluminescence intensity compared with that of a bare SiO2/Si substrate. The reflectance spectra of MoS2/ND and MoS2/NH had clear features originating from excitation of localized surface plasmon and propagating surface plasmon polaritons. Notably, the surface photovoltages (SPV) of these hybrid plasmonic nanostructures had opposite polarities, indicating negative and positive charging at MoS2/ND and MoS2/NH, respectively. Surface potential maps, obtained by Kelvin probe force microscopy, suggested that the potential gradient led to a distinct spatial distribution of photo-generated charges in these two samples under illumination. Furthermore, the local density of photo-generated excitons, as predicted from optical simulations, explained the SPV spectra of MoS2/ND and MoS2/NH. We show that the geometric configuration of the plasmonic nanostructures modified the polarity of photo-generated excess charges in MoS2. These findings point to a useful means of optimizing optoelectronic characteristics and improving the performance of MoS2-based plasmonic devices. © 2020 American Chemical Society. -
dc.language English -
dc.publisher American Chemical Society -
dc.title Opposite Polarity Surface Photovoltage of MoS2Monolayers on Au Nanodot versus Nanohole Arrays -
dc.type Article -
dc.identifier.doi 10.1021/acsami.0c14563 -
dc.identifier.scopusid 2-s2.0-85094654022 -
dc.identifier.bibliographicCitation ACS Applied Materials & Interfaces, v.12, no.43, pp.48991 - 48997 -
dc.description.isOpenAccess FALSE -
dc.subject.keywordAuthor MoS2 -
dc.subject.keywordAuthor localized surface plasmon -
dc.subject.keywordAuthor surface plasmon polariton -
dc.subject.keywordAuthor photoluminescence -
dc.subject.keywordAuthor surface photovoltage -
dc.subject.keywordPlus EMISSION -
dc.subject.keywordPlus PHOTOLUMINESCENCE -
dc.subject.keywordPlus RAMAN -
dc.subject.keywordPlus NANOPARTICLES -
dc.citation.endPage 48997 -
dc.citation.number 43 -
dc.citation.startPage 48991 -
dc.citation.title ACS Applied Materials & Interfaces -
dc.citation.volume 12 -
Files in This Item:

There are no files associated with this item.

Appears in Collections:
Department of Physics and Chemistry Future Semiconductor Nanophotonics Laboratory 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE