Cited time in webofscience Cited time in scopus

Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature

Title
Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature
Author(s)
Nazim, MohammedKhan, Aftab Aslam ParwazAsiri, Abdullah M.Kim, Jae Hyun
DGIST Authors
Nazim, MohammedKhan, Aftab Aslam ParwazAsiri, Abdullah M.Kim, Jae Hyun
Issued Date
2021-02
Type
Article
Article Type
Article
ISSN
2470-1343
Abstract
In this work, we report the facile, environmentally friendly, room-temperature (RT) synthesis of porous CuO nanosheets and their application as a photocatalyst to degrade an organic pollutant/food dye using NaBH4 as the reducing agent in an aqueous medium. Ultrahigh-resolution field effect scanning electron microscopy images of CuO displayed a broken nanosheet-like (a length of ∼160 nm, a width of ∼65 nm) morphology, and the lattice strain was estimated to be ∼1.24 × 10-3 using the Williamson-Hall analysis of X-ray diffraction plots. Owing to the strong quantum size confinement effect, CuO nanosheets resulted in an optical energy band gap of ∼1.92 eV, measured using Tauc plots of the ultraviolet-visible (UV-vis) spectrum, resulting in excellent photocatalytic efficiency. The RT synthesized CuO catalyst showed a high Brunauer-Emmet-Teller surface area of 30.88 ± 0.2313 m2/g (a correlation coefficient of 0.99972) with an average Barrett-Joyner-Halenda pore size of ∼20.385 nm. The obtained porous CuO nanosheets exhibited a high crystallinity of 73.5% with a crystallite size of ∼12 nm and was applied as an efficient photocatalyst for degradation of the organic pollutant/food dye, Allura Red AC (AR) dye, as monitored by UV-vis spectrophotometric analysis and evidenced by a color change from red to colorless. From UV-vis spectra, CuO nanosheets exhibited an efficient and ultrafast photocatalytic degradation efficiency of ∼96.99% for the AR dye in an aqueous medium within 6 min at RT. According to the Langmuir-Hinshelwood model, photodegradation reaction kinetics followed a pseudo-first-order reaction with a rate constant of k = 0.524 min-1 and a half-life (t1/2) of 2.5 min for AR dye degradation in the aqueous medium. The CuO nanosheets showed an outstanding recycling ability for AR degradation and would be highly favorable and an efficient catalyst due to the synergistic effect of high adsorption capability and photodegradation of the food dye. © 2021 The Authors. Published by American Chemical Society
URI
http://hdl.handle.net/20.500.11750/13033
DOI
10.1021/acsomega.0c04747
Publisher
American Chemical Society
Related Researcher
  • 김재현 Kim, Jae Hyun 에너지환경연구부
  • Research Interests 에너지; 배터리; 고체전해질; 태양전지; 전기차; 리튬이온배터리
Files in This Item:
000618087400018.pdf

000618087400018.pdf

기타 데이터 / 9.75 MB / Adobe PDF download
Appears in Collections:
Division of Energy Technology 1. Journal Articles

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE