Cited time in webofscience Cited time in scopus

Full metadata record

DC Field Value Language
dc.contributor.advisor Han, Byung Chan -
dc.contributor.author Seo, Joon Kyo -
dc.date.accessioned 2017-05-10T08:49:52Z -
dc.date.available 2016-05-18T00:00:00Z -
dc.date.issued 2013 -
dc.identifier.uri http://dgist.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000002262498 en_US
dc.identifier.uri http://hdl.handle.net/20.500.11750/1327 -
dc.description.abstract Durability of Pt based nanocatalyst materials in acidic environments is one of the key issues hindering the development of efficient fuel cells. In this study, we used first principles calculations to analyze the electrochemical degradation of Pt nanoparticles. Model systems for Pt nanoparticles of different sizes were conceptualized for calculating their electrochemical dissolution potential, which essentially indicates the nanoparticle’s resistance to dissolution. We adopted a step by step mechanism for dissolution of Pt atoms on the outermost shell of the nanoparticle by accounting for various possible pathways which lead to complete dissolution. Based strictly on thermodynamic considerations, our findings point towards a strong size dependent behavior of the Pt nanoparticles, whose properties become similar to bulk Pt for size more than 3 nm. Remarkably, we find that for all cases, the dissolution proceeds by exposing more (111) facets at the expense of other atomic sites. Our results indicate that the competition between two major thermodynamic factors, the cohesive energy and the surface energy, decides the dissolution pathway. Based on our findings, we propose some desired characteristics which can serve towards rational design of model Pt nanocatalysts. Our findings may be of importance in understanding of the electrochemical stability in other applications as well, for instance the photo-catalysts for fuel generations via water splitting. ⓒ 2013 DGIST -
dc.description.tableofcontents Chapter 1. Introduction 1
--
1.1 Challenges of fuel cells 1
--
1.2 Objectives of this work 2
--
Chapter 2. Methodology 4
--
2.1 Model systems 4
--
2.2 Computational details 7
--
2.3 Formalisms 8
--
Chapter 3. Results and discussion 10
--
Chapter 4. Limitations of the thesis and future works 17
--
Chapter 5. Conclusions 19
--
References 21
--
Summary (국문요약) 25
-
dc.format.extent 25 -
dc.language eng -
dc.publisher DGIST -
dc.subject Density functional theory -
dc.subject Fuel cell -
dc.subject Nanocatalyst -
dc.subject Stability -
dc.subject Degradation mechanism -
dc.subject 제일원리전산 -
dc.subject 연료전지 -
dc.subject 나노입자 -
dc.subject 내구성 -
dc.subject 열화메커니즘 -
dc.title First-principles thermodynamic study on the electrochemical stability of Pt nanoparticles in fuel cell applications -
dc.title.alternative 제일원리전산을 이용한 연료전지용 백금 나노촉매의 전기화학적 안정성에 대한 열역학적 분석 -
dc.type Thesis -
dc.identifier.doi 10.22677/thesis.2262498 -
dc.description.alternativeAbstract 산성환경에서 백금 나노입자의 열화 문제는 고성능 연료전지를 개발함에 있어서 가장 핵심이 되는 부분이다. 본 논문에서는 열역학적 관점을 기반으로 하여 백금 나노입자의 전기화학적 열화현상을 규명하기 위해 제일원리전산을 도입하였다. 열화현상은 전기화학적 용해전위와 관련이 있는데 이를 계산하기 위해 3 nm 이하 백금 입자모델을 세웠다. 그리고 이것이 완전용해에 이르는 여러 루트를 설명하기 위해, 나노입자의 최외곽 껍질이 단계적으로 용해되어서 없어지는 소위 “step by step” 메커니즘을 도입하였다. 그 결과, 백금 나노입자의 용해전위가 입자크기에 의해 좌우되고, 크기가 커질수록 벌크 백금 금속의 용해전위에 가까워짐을 발견하였다. 주목할만한 점은, 본 연구에서 사용된 모든 백금 나노입자 모델들이 (111) 면을 점점 더 노출하면서 용해되는 특성을 보였고, 응집에너지와 표면에너지 간의 상호작용을 통해 내구성이 결정되는 것을 확인하였다. 본 연구과정에서 발견된 나노입자의 전기화학적 용해 특성은 실제 백금 나노촉매를 디자인 함에 있어 기준을 제시할 것이다. 그뿐만 아니라 광촉매 응용분야와 같은 여러 어플리케이션 개발에도 중요한 역할을 담당할 것이다. ⓒ 2013 DGIST -
dc.description.degree Master -
dc.contributor.department Energy Systems Engineering -
dc.contributor.coadvisor Yoon, Young Gi -
dc.date.awarded 2013. 2 -
dc.publisher.location Daegu -
dc.description.database dCollection -
dc.date.accepted 2016-05-18 -
dc.contributor.alternativeDepartment 대학원 에너지시스템공학전공 -
dc.contributor.affiliatedAuthor Seo, Joon Kyo -
dc.contributor.affiliatedAuthor Han, Byung Chan -
dc.contributor.alternativeName 서준교 -
dc.contributor.alternativeName 한병찬 -
dc.contributor.alternativeName 윤영기 -
Files in This Item:
000002262498.pdf

000002262498.pdf

기타 데이터 / 1.21 MB / Adobe PDF download
Appears in Collections:
Department of Energy Science and Engineering Theses Master

qrcode

  • twitter
  • facebook
  • mendeley

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE